New Model Helps Diabetes Research

Scientists at the Babraham Institute are developing new methods to aid research into the causes of diabetes, a condition suffered by around 2.5 million people in the UK. A new study, published in The Journal of Clinical Investigation, describes an effective model of a rare form of the disease called transient neonatal diabetes mellitus (TNDM), which affects approximately 1 in 600,000 newborn babies. Babies born with TNDM initially cannot produce insulin, but symptoms disappear after about 3 months. However two-thirds of those affected will develop diabetes later in life, usually in their teens.

The mouse model, developed by the research group headed by Dr Gavin Kelsey, shows disappearing and reappearing diabetes similar to that seen in TDNM, and makes the examination of the faulty insulin-producing cells of the pancreas much more straightforward. A reduction in the levels of several key chemicals involved in the development of the pancreas has already been shown.

Dr Kelsey comments “Although a rare form of diabetes, TNDM is important to our understanding of diabetes because the defective gene has been identified. A model for TNDM, such as the one produced at Babraham, will allow us to study in detail the problems that arise in the insulin-producing cells when this defective gene is expressed.”

Media Contact

Emma Southern alfa

More Information:

http://www.bbsrc.ac.uk

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Chimpanzee in a tropical forest demonstrating genetic adaptations for survival.

Parallel Paths: Understanding Malaria Resistance in Chimpanzees and Humans

The closest relatives of humans adapt genetically to habitats and infections Survival of the Fittest: Genetic Adaptations Uncovered in Chimpanzees Görlitz, 10.01.2025. Chimpanzees have genetic adaptations that help them survive…

Fiber-rich foods promoting gut health and anti-cancer effects.

You are What You Eat—Stanford Study Links Fiber to Anti-Cancer Gene Modulation

The Fiber Gap: A Growing Concern in American Diets Fiber is well known to be an important part of a healthy diet, yet less than 10% of Americans eat the minimum recommended…

RNA-binding protein RbpB regulating gut microbiota metabolism in Bacteroides thetaiotaomicron.

Trust Your Gut—RNA-Protein Discovery for Better Immunity

HIRI researchers uncover control mechanisms of polysaccharide utilization in Bacteroides thetaiotaomicron. Researchers at the Helmholtz Institute for RNA-based Infection Research (HIRI) and the Julius-Maximilians-Universität (JMU) in Würzburg have identified a…