UBC discovery is gateway to new stroke treatments

There may be new treatments for stroke, migraine, Alzheimer’s and other brain disorders, thanks to the discovery of a mechanism for regulating brain blood flow made by researchers at the University of British Columbia.

Scientists found that astrocytes — cells that surround nerve cells and all blood vessels in the brain — have a primary role in regulating blood flow within the brain, and hold promise as a target for new therapies. The findings of the two-year study funded by the Canadian Institutes of Health Research (CIHR) and the Canadian Stroke Network were published this week in Nature by UBC post-doctoral fellow Sean Mulligan and Brian MacVicar, a professor in the Brain Research Centre and the Dept. of Psychiatry at UBC and an investigator with the Vancouver Coastal Health Research Institute (VCHRI).

Using a new technique that they developed to study brain blood flow, Mulligan and MacVicar found that a rise of calcium within the astrocytes instructs the blood vessels to constrict, which alters blood flow.

Brain blood flow supplies energy for brain activities. Vessel contraction and dilation is a normal part of brain functioning, however, improperly regulated flow can result in brain disorder or damage. Calcium flow in the brain is not influenced by diet. “This is an exciting find because it gives us a new site to investigate,” says MacVicar, Canada Research Chair in Neuroscience. “This discovery highlights the complex communication between astrocytes and blood vessels, and research can now be focused on understanding and controlling these communication pathways.”

The discovery that astrocytes cause constriction upsets earlier theories that astrocytes might cause vessels to dilate, he adds. “This discovery will serve as a gateway to new treatments and is of fundamental importance in understanding how the brain regulates blood flow,” says Dr. Bruce McManus, Scientific Director of the Institute of Circulatory and Respiratory Health of the Canadian Institutes of Health Research (CIHR). “This powerful research gives us new targets against which to develop a new generation of drugs to minimize stroke damage to the brain,” adds Dr. Antoine Hakim, CEO and Scientific Director of the Canadian Stroke Network. Next steps in the research include determining how to block the calcium in astrocytes to reduce damage caused by inadequate brain blood flow. MacVicar estimates treatments may be available in five to 10 years.

Every year, 50,000 Canadians suffer a stroke, or “brain attack.” Another 300,000 people are living with the consequences of stroke, which is the leading cause of adult disability in Canada.

The Brain Research Centre, located at UBC Hospital, comprises more than 150 investigators with multidisciplinary expertise in neuroscience research ranging from the test tube, to the bedside, to industrial spin-offs. VCHRI is a joint venture between UBC and Vancouver Coastal Health that promotes development of new researchers and research activity.

CIHR is Canada’s premier agency for health research. Its objective is to excel, according to internationally accepted standards of scientific excellence, in the creation of new knowledge and its translation into improved health for Canadians, more effective health services and products and a strengthened health care system.

The Canadian Stroke Network includes more than 100 of Canada’s leading scientists and clinicians from 24 universities who work collaboratively on various aspects of stroke. The Network, which is headquartered at the University of Ottawa, also includes partners from industry, the non-profit sector, provincial and federal governments Canada Research Chairs are federally funded research positions that are the centerpiece of a national strategy to make Canada one of the world’s top five countries for research and development.

Media Contact

Hilary Thomson EurekAlert!

More Information:

http://www.ubc.ca

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

DNA origami structures controlling biological membranes for targeted drug delivery

Shaping the Future: DNA Nanorobots That Can Modify Synthetic Cells

Scientists at the University of Stuttgart have succeeded in controlling the structure and function of biological membranes with the help of “DNA origami”. The system they developed may facilitate the…

Graph showing smoking's negative impact on earnings of young workers.

At What Cost? Smoking Linked to Decreased Earnings, Less-Educated Workers

A new paper in Nicotine & Tobacco Research, published by Oxford University Press, finds that smoking has a negative effect on earnings among younger workers. This is particularly true among the…

Illustration of RNA modifications contributing to fungal drug resistance

Tackling Life-Threatening Fungal Infections Using RNA Modifications

Importance of RNA modifications for the development of resistance in fungi raises hope for more effective treatment of fungal infections. An often-overlooked mechanism of gene regulation may be involved in…