Dying cells encourage neighbors to grow

Researchers from The Rockefeller University have uncovered specific mechanisms by which cells that are genetically programmed to commit suicide stimulate growth in surrounding cells. The research, published online in Developmental Cell, provides new information about how normal, healthy tissues are maintained and may shed some light on a pathway that may contribute to tumor growth.


It has been known for some time that cells that die as a result of injury-provoked programmed cell death, also known as apoptosis, may stimulate the growth of surrounding cells. “Such compensatory mechanisms may be essential to allow for the elimination of as many damaged or dangerous cells as needed without compromising organismal fitness. In spite of its importance, the underlying mechanisms are poorly understood,” explains study leader Dr. Hermann Steller.

Dr. Steller and colleagues demonstrate that when cells from the imaginal disc in the fruit fly Drosophila are stimulated to undergo apoptosis but experimentally manipulated so that they do not actually die (“undead cells”), they stimulate the growth of neighboring tissue. The researchers demonstrate that the undead cells promote cell growth in the surrounding imaginal disc by activating specific signaling cascades that are known to be required for cell proliferation. Although artificial, the experimental creation of undead cells allows this phenomenon to be expanded and studied. The authors provide evidence that apoptotic cells that are allowed to complete the process of dying also secrete the growth-stimulating signals.

The researchers conclude that apoptotic cells actively induce compensatory proliferation by activating growth-associated signaling pathways and secreting molecules that promote growth in surrounding tissues. They also suggest that abnormal regulation of apoptosis, as has been shown to be the case in some cancers, may result in pathological activation of these pathways. “Based on the behavior of undead cells in Drosophila imaginal discs, one might expect mutations that block or delay apoptosis to cause secondary proliferation and hyperplasia. It remains to be tested if such a mechanism contributes to hyperplasia in mouse models and human malignancies,” offers Dr. Steller.

Media Contact

Heidi Hardman EurekAlert!

More Information:

http://www.cell.com

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Humans vs Machines—Who’s Better at Recognizing Speech?

Are humans or machines better at recognizing speech? A new study shows that in noisy conditions, current automatic speech recognition (ASR) systems achieve remarkable accuracy and sometimes even surpass human…

AI system analyzing subtle hand and facial gestures for sign language recognition.

Not Lost in Translation: AI Increases Sign Language Recognition Accuracy

Additional data can help differentiate subtle gestures, hand positions, facial expressions The Complexity of Sign Languages Sign languages have been developed by nations around the world to fit the local…

Researcher Claudia Schmidt analyzing Arctic fjord water samples affected by glacial melt.

Breaking the Ice: Glacier Melting Alters Arctic Fjord Ecosystems

The regions of the Arctic are particularly vulnerable to climate change. However, there is a lack of comprehensive scientific information about the environmental changes there. Researchers from the Helmholtz Center…