Microbe’s genome promises insight into Earth’s carbon and sulfur cycling
Scientists have sequenced the genome of the microorganism Silicibacter pomeroyi, a member of an abundant group of marine bacteria known to impact the Earths ecosystem by releasing and consuming atmospheric gases. This genetic blueprint provides insight into the biochemical pathways the bacterium uses to regulate its release of sulfur and carbon monoxide. Atmospheric sulfur serves as a catalyst for cloud formation, in turn, directly affecting the planets temperature and energy regulation, while carbon monoxide is a greenhouse gas.
The interdisciplinary research team, led by Mary Ann Moran at the University of Georgia, includes collaborators at The Institute for Genomic Research (TIGR) and six universities. Their work appears in the December 16 issue of Nature.
While everyone is aware that bacteria can cause disease, its less obvious that these microorganisms play an important part in the global ecosystem. “Having the genome of S. pomeroyi completely sequenced provides an invaluable tool to understand how an ocean bacterium functions and how it affects the Earths atmosphere,” says Moran. The knowledge gained from continued study of S. pomeroyi and its genome will be used in the study of related organisms that likewise mediate carbon and sulfur cycling in the ocean. Moran continued, “Admittedly, this is not the only bacterium that influences gas exchange between the ocean and atmosphere, but once we understand how S. pomeroyi functions, we can apply the knowledge to other related marine bacteria.”
The genome, similar in size to that of the more familiar Escherichia coli, is composed of a 4.1 million base pair main chromosome and a 491,000 base pair extra-chromosomal piece of DNA. Early investigation of the genome found 4,283 regions in the genome that are predicted to code for the synthesis of proteins and other cellular machinery.
Media Contact
More Information:
http://www.nsf.govAll latest news from the category: Life Sciences and Chemistry
Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.
Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.
Newest articles
Pinpointing hydrogen isotopes in titanium hydride nanofilms
Although it is the smallest and lightest atom, hydrogen can have a big impact by infiltrating other materials and affecting their properties, such as superconductivity and metal-insulator-transitions. Now, researchers from…
A new way of entangling light and sound
For a wide variety of emerging quantum technologies, such as secure quantum communications and quantum computing, quantum entanglement is a prerequisite. Scientists at the Max-Planck-Institute for the Science of Light…
Telescope for NASA’s Roman Mission complete, delivered to Goddard
NASA’s Nancy Grace Roman Space Telescope is one giant step closer to unlocking the mysteries of the universe. The mission has now received its final major delivery: the Optical Telescope…