Researchers create mouse lacking key inflammation gene
In a paper published yesterday in The Proceedings of the National Academy of Science (PNAS), researchers from Boston University School of Dental Medicine generated a mouse model exhibiting reduced inflammation.
The Boston University researchers found that the transcription factor LITAF (Lipopolysaccharide [LPS]-Induced TNF-Alpha Factor) controls inflammation through a completely different pathway than the better known and studied NF-kB transcriptional regulator.
Drugs regulating TNF-alpha through the better-known NF-kB pathway such as Remicade, Embrel, and Humira represent a multibillion market. The LITAF transcription factor offers a new approach to treating inflammatory disorders along with other immunological conditions. Researchers are offering this in vivo model for sale to spearhead discovery of drugs against inflammatory disorders such as arthritis and Crohn's disease.
In the study, Boston University researchers created a mouse lacking the gene that encodes for the LITAF protein. They found that several cytokines were induced at lower levels in the LITAF-deficient mice compared with the levels observed in the LITAF-positive control mice. Specifically, the deficient mice were more resistant to LPS-induced lethality.
“The generation of the macrophage-specific LITAF-deficient animals opens new opportunities for assessing the role of LITAF in inflammation in hopes of designing anti-LITAF drugs for major inflammatory diseases,” says Dr. Salomon Amar of Boston University, the lead author of the paper. Amar discovered the LITAF transcription factor in 1999.
Researchers, who have applied to patent the mouse, are now working on whether other molecules work in synergy with LITAF.
Media Contact
More Information:
http://www.bu.eduAll latest news from the category: Life Sciences and Chemistry
Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.
Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.
Newest articles
Scientists transform blood into regenerative materials
… paving the way for personalized, blood-based, 3D-printed implants. Scientists have created a new ‘biocooperative’ material based on blood, which has shown to successfully repair bones, paving the way for…
A new experimental infection model in flies
…offers a fast and cost-effective way to test drugs. Researchers at the Germans Trias i Pujol Research Institute and Hospital have reinforced their leading role in infectious disease research by…
Material developed with novel stretching properties
KIT researchers produce metamaterial with different extension and compression properties than conventional materials. With this material, the working group headed by Professor Martin Wegener at KIT’s Institute of Applied Physics…