Research could lead to major breakthrough in the cost of effective new cancer drug

The university is jointly funding the research of PhD student Giso Abadi from Valdosta State University in Georgia, who is working with Sunderland scientists Dr Lyn Noble and Professor Paul Groundwater on the anti-cancer agent bryostatin.

In clinical trials bryostatin has already proven extremely effective in fighting many cancers, and has recently been proven effective in the treatment of Alzheimers disease. The drug is present in the marine invertebrate bugula neritina, and in the surrounding sediment in areas of the Gulf of Mexico.

However, it takes 14 tons of dry weight bugula from the ocean to extract only one ounce of purified bryostatin.

“Mass production just isn’t viable on economic or environmental grounds using this method,” says Dr Noble, Giso’s director of studies at Sunderland.

“Usually when potential drugs which occur naturally are discovered chemists can synthesise them in the lab, and this is possible with bryostatin, but it takes 65 reaction steps. Pharmaceutical companies will only normally consider synthesising a medicinal product that uses a process of between five and ten steps, so this method also has no commercial mileage.

“It costs a kings ransom to buy synthetic bryostatin, £261 per 50 micrograms – that’s £5.2 million per gram!”

A lot of research has been done to find a cost effective way to produce the drug in the USA, including a $7m project to create a ‘sea farm’ where the marine organism could be bred naturally. Unfortunately, the farm was exposed to unpredictable weather conditions and the bugula colony was lost in a hurricane.

Now PhD student Giso is trying a different approach. Bacteria that use the marine animal as a host are thought to be responsible for producing the bryostatin.

Efforts are underway to successfully grow the bacteria in salt water tanks in the lab at Valdosta, by optimising the conditions which mimic the bacteria’s natural environment. If successful it is hoped that Giso’s methods, alongside the expertise of Sunderland chemists, will eventually find an effective and relatively inexpensive method of producing bryostatin in the laboratory.

Chemists at Sunderland were so impressed with Giso’s research that they flew out to Valdosta and convinced officials there to jointly fund her work.

Giso, who is used to the humid heat of America’s Deep South and currently trying to adjust to the North-East weather, is planning to extend her work into investigating if it’s possible to find bugula neritina and harvest it from the North Sea, rather than the Gulf of Mexico.

“Bugula is seasonal in the Gulf of Mexico, a very nondescript brown moss like animal, and it has been found in colder waters of other oceans around the world,” she said. “It’s not known if they are active in the North Sea, but the water’s certainly cold enough.”

Whether or not they do manage to find the elusive creatures in the North Sea, by optimising the growing conditions for the bacteria to thrive and produce in the lab the research team’s eventual aim is to create a ‘production line’ of bryostatin. If they can manage that the drug will be available cheaply for the first time, and will change the lives of literally millions of cancer and Alzheimer sufferers worldwide.

Media Contact

Tony Kerr alfa

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Pinpointing hydrogen isotopes in titanium hydride nanofilms

Although it is the smallest and lightest atom, hydrogen can have a big impact by infiltrating other materials and affecting their properties, such as superconductivity and metal-insulator-transitions. Now, researchers from…

A new way of entangling light and sound

For a wide variety of emerging quantum technologies, such as secure quantum communications and quantum computing, quantum entanglement is a prerequisite. Scientists at the Max-Planck-Institute for the Science of Light…

Telescope for NASA’s Roman Mission complete, delivered to Goddard

NASA’s Nancy Grace Roman Space Telescope is one giant step closer to unlocking the mysteries of the universe. The mission has now received its final major delivery: the Optical Telescope…