Self-assembling nanostructures of DNA <br>– a biotechnologist&#039;s dream

Or at least use the specific bonds of DNA molecules to get nanostructures to grow themselves right in the test tube? This technology could be used to build everything from tiny electronics components to machines that sequence DNA. This is shown in a dissertation from Mid Sweden University.

Building structures as tiny as a few nanometers is a major problem with today's technology. This is an important hurdle, because really tiny things can be extremely useful. Good examples are microelectronics ¬the smaller you can make the components on a chip, the faster you will be able to carry out calculations on it.

“The method we have developed for self-assembling blocks of DNA and gold particles is absolutely unique. The method can be used, for instance, to produce tiny nano carriers for drugs that can be emptied directly in cells on a given chemical signal,” says Björn Högberg.

Björn Högberg has also taken a close look at a method for building nanostructures with the help of DNA that was invented by a a US researcher in the spring of 2006. The method is called 'DNA origami' and involves, in brief, folding or splicing together a long string of DNA with the aid of a large number of short strings (''staple DNA').

“In my dissertation I propose just how this technology could be used to construct a facility for extremely rapid DNA sequencing, which is a biotechnologist's dream,” says Björn Högberg.

The title of the dissertation is DNA-Mediated Self-Assembly of Nanostructures; Theory and Experiments.

Media Contact

Lars Aronsson idw

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Future AR/VR controllers could be the palm of your hand

Carnegie Mellon University’s EgoTouch creates simple interfaces for virtual and augmented reality. The new generation of augmented and virtual reality controllers may not just fit in the palm of your…

‘Game changer’ in lithium extraction

Rice researchers develop novel electrochemical reactor. A team of Rice University researchers led by Lisa Biswal and Haotian Wang has developed an innovative electrochemical reactor to extract lithium from natural…

The blue-green sustainable proteins of seaweed

… may soon be on your plate. The protein in sea lettuce, a type of seaweed, is a promising complement to both meat and other current alternative protein sources. Seaweed…