Creating corn for cars
Right now, most U.S. ethanol is made from corn kernels. This is because breaking down the cellulose in corn leaves and stalks into sugars that can be fermented into ethanol is difficult and expensive.
“We've developed two generations of Spartan Corn,” said Mariam Sticklen, MSU professor of crop and soil sciences. “Both corn varieties contain the enzymes necessary to break down cellulose and hemicellulose into simple sugars in their leaves. This will allow for more cost-effective, efficient production of ethanol.”
Sticklen will co-chair a panel on energy crops for biofuels today at BIO2007, the annual international convention of the Biotechnology Industry Organization.
“In the future, corn growers will be able to sell their corn stalks and leaves as well as their corn grain for ethanol production,” Sticklen said. “What is now a waste product will become an economically viable commodity.”
Media Contact
More Information:
http://www.msu.eduAll latest news from the category: Life Sciences and Chemistry
Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.
Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.
Newest articles
NASA: Mystery of life’s handedness deepens
The mystery of why life uses molecules with specific orientations has deepened with a NASA-funded discovery that RNA — a key molecule thought to have potentially held the instructions for…
What are the effects of historic lithium mining on water quality?
Study reveals low levels of common contaminants but high levels of other elements in waters associated with an abandoned lithium mine. Lithium ore and mining waste from a historic lithium…
Quantum-inspired design boosts efficiency of heat-to-electricity conversion
Rice engineers take unconventional route to improving thermophotovoltaic systems. Researchers at Rice University have found a new way to improve a key element of thermophotovoltaic (TPV) systems, which convert heat…