Reproduction: intestinal stress influences chromosome inheritance

The signalling molecule SYSM-1 (yellow) in the germ cells (blue nuclei) where it regulates the germ cell death. Picture: Siyao Wang

Scientists at the University of Cologne show in the nematode Caenorhabditis elegans that intestinal cells check the quality of oocytes and intervene when they detect defects / Publication in ‘Nature Communications’.

Inheriting a normal and intact number of chromosomes in germ cells, egg and sperm, is essential for the preservation of all species. With increasing age, the risk of the egg cell not inheriting the normal set of chromosomes increases. This results in so-called aneuploidy, which can mean either too many or too few chromosomes. The best-known example is trisomy, also known as Down syndrome in humans.

Researchers at the Institute for Genome Stability in Aging and Disease, part of the CECAD Cluster of Excellence for Aging Research at the University of Cologne, have now uncovered that signals from intestinal cells significantly influence the decision whether damaged eggs are eliminated or not in the nematode C. elegans. The article, ‘Somatic PMK-1/p38 signaling links environmental stress to germ cell apoptosis and heritable euploidy’ has been published in Nature Communications.

The two scientists Dr Najmeh Soltanmohammadi and Dr Siyao Wang, together with CECAD research group leader Professor Dr Björn Schumacher, investigated the stability of genomes in oocytes (egg cells) of C. elegans. In the germ line, the stability of the chromosomes of the oocytes is closely examined; only intact oocytes survive to be consequently fertilized. The research team now found that responses to environmental stress in the gut lead to the release of a messenger substance that regulates the animal’s germline. If control by the stress responses in the gut is absent, egg quality control fails. Despite damaged chromosomes, oocytes survive, more offspring with defective chromosome number are produced, and aneuploidy occurs. The stress response in the intestine reacts both to chromosome damage in the oocytes and to environmental influences such as increased temperatures.

In humans, the quality of the chromosomes in the oocytes is also closely monitored, and in the event of damage, the same mechanisms of cell death occur as in the oocytes of the nematode. With increasing age, the quality of human oocytes decreases. Environmental influences also play an important role in humans, but how they affect egg quality control is still poorly understood. ‘This is precisely why the new findings on the control of oocyte quality in the simple nematode are of such outstanding importance,’ said Schumacher. ‘We have now shown for the first time how stress responses in the gut control the stability of oocyte chromosomes. Understanding how environmental factors control oocyte quality through such stress responses opens up entirely new possibilities to eliminate harmful influences and prevent malformations.’

Media Contact:
Professor Dr Björn Schumacher
Institute for Genome Stability in Aging and Disease
+49 221 478 84202
bjoern.schumacher@uni-koeln.de
Press and Communications Team:
Dr Anna Euteneuer
+49 221 478 84043
anna.euteneuer@uni-koeln.de

Publication:
Soltanmohammadi N, Wang S, Schumacher B. ‘Somatic PMK-1/p38 signaling links environmental stress to germ cell apoptosis and heritable euploidy.’ Nature Communications 2022
DOI: 10.1038/s41467-022-28225-8

https://portal.uni-koeln.de/en/universitaet/aktuell/press-releases/single-news/fortpflanzung-stress-im-darm-beeinflusst-die-vererbung-der-chromosomen

Media Contact

Gabriele Meseg-Rutzen Presse und Kommunikation

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Innovative 3D printed scaffolds offer new hope for bone healing

Researchers at the Institute for Bioengineering of Catalonia have developed novel 3D printed PLA-CaP scaffolds that promote blood vessel formation, ensuring better healing and regeneration of bone tissue. Bone is…

The surprising role of gut infection in Alzheimer’s disease

ASU- and Banner Alzheimer’s Institute-led study implicates link between a common virus and the disease, which travels from the gut to the brain and may be a target for antiviral…

Molecular gardening: New enzymes discovered for protein modification pruning

How deubiquitinases USP53 and USP54 cleave long polyubiquitin chains and how the former is linked to liver disease in children. Deubiquitinases (DUBs) are enzymes used by cells to trim protein…