Researchers Identify Genes Linked to Chemoresistance

Liver cancer is a highly aggressive form that has limited therapeutic options. One of the key challenges with cancer treatment is that patients can develop resistance to chemotherapy. Researchers are examining ways to prevent resistance by determining the molecular mechanisms involved with cancer progression, and then developing new generations of chemotherapeutic agents.

In the study, published online in the Early Edition of the Proceedings of the National Academy of Sciences the week of July 13, researchers reported that two genes – astrocyte elevated gene-1, or AEG-1, and late SV40 factor, LSF, contribute to resistance of a commonly used chemotherapeutic drug called 5-fluorouracil, or 5-FU. The team found that over-expression of AEG-1 increased resistance of the liver cells to 5-FU. They observed that a second gene, LSF, is under the control of AEG-1 and mediates a series of molecular pathways involved the resistance to 5-FU.

Previous studies suggest that the expression of AEG-1, is very low in normal cells or tissues such as breast, prostate, liver and brain. However, in cancers of the same organs, expression of AEG-1 is significantly increased. AEG-1 was initially cloned in the laboratory of Paul B. Fisher, Ph.D., director of the VCU Institute of Molecular Medicine.

Earlier this year, the team determined that AEG-1 modulates expression of genes relevant to the progression of liver cancer, including invasion, metastasis, resistance to chemotherapy, the formation of new blood vessels and senescence. They identified that LSF, a transcription factor that regulates gene expression, is increased by AEG-1.

“Since AEG-1 is a key regulator of liver cancer development and progression, understanding how this molecule works will provide profound insights into the mechanism of liver cancer development,” said principal investigator Devanand Sarkar, Ph.D., a Harrison Endowed Scholar in Cancer Research at the VCU Massey Cancer Center and assistant professor in the Department of Human and Molecular Genetics in the VCU School of Medicine.

“By understanding these molecular pathways and mechanisms, we may be able to create new drugs to inhibit the expression of AEG-1 or LSF and even develop combination drug therapies to enhance the effectiveness of 5- fluorouracil.”

“These findings may have important therapeutic implications. Based on the expression level of AEG-1 or LSF in tumor biopsy samples, a clinician might determine whether a patient would respond to 5-fluorouracil and thus design an effective chemotherapeutic protocol,” he said.

Sarkar said that AEG-1 contributes to resistance to not only 5-FU, but also to other chemotherapeutics such as doxorubicin and cisplatin, although the molecular mechanism of resistance to the latter drugs is different from 5-FU. The team is currently conducting studies to further understand the molecular mechanisms by which AEG-1 induces resistance to chemotherapy so that this knowledge might be applied to develop strategies to maximize the efficacy of chemotherapeutics. Additionally, novel combinatorial treatment approaches that incorporate AEG-1 or LSF inhibition in a standard chemotherapeutic protocol will be evaluated for their efficacy in inhibiting liver cancer in animal models.

This work was supported by grants from The Goldhirsh Foundation, the National Institutes of Health, and the Dana Foundation.

Sarkar worked with a team that included VCU School of Medicine researchers Byoung Kwon Yoo, Ph.D., Zao-zhong Su, Ph.D., Rachel Gredler, B.S., Nicollaq Vozhilla, D.V.M., Dong Chen, B.S., and Paul B. Fisher, M.Ph., Ph.D. Also contributing were Talitha Forcier, B.S., and Khalid Shah, Ph.D., from Harvard Medical School; and Utsav Saxena, and Ulla Hansen, Ph.D., from Boston University. The VCU Institute of Molecular Medicine also provided support in conducting these studies.

About VCU and the VCU Medical Center:

Virginia Commonwealth University is the largest university in Virginia with national and international rankings in sponsored research. Located on two downtown campuses in Richmond, VCU enrolls 32,000 students in 205 certificate and degree programs in the arts, sciences and humanities. Sixty-five of the programs are unique in Virginia, many of them crossing the disciplines of VCU’s 15 schools and one college. MCV Hospitals and the health sciences schools of Virginia Commonwealth University compose the VCU Medical Center, one of the nation’s leading academic medical centers. For more, see www.vcu.edu.

About the VCU Massey Cancer Center:

The VCU Massey CancerCenter is one of 63 National Cancer Institute-designated institutions that leads and shapes America’s cancer research efforts. Working with all kinds of cancers, the Center conducts basic, translational and clinical cancer research, provides state-of-the-art treatments and promotes cancer prevention and education. Since 1974, Massey has served as an internationally recognized center of excellence. It offers more clinical trials than any other institution in Virginia, serving patients in Richmond and in four satellite locations. Treating all kinds of cancers, its 1,000 researchers, clinicians and staff members are dedicated to improving the quality of human life by developing and delivering effective means to prevent, control and, ultimately, to cure cancer. Visit Massey online at www.massey.vcu.edu or call 1-877-4-MASSEY.

Media Contact

Sathya Achia Abraham EurekAlert!

More Information:

http://www.vcu.edu

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Future AR/VR controllers could be the palm of your hand

Carnegie Mellon University’s EgoTouch creates simple interfaces for virtual and augmented reality. The new generation of augmented and virtual reality controllers may not just fit in the palm of your…

‘Game changer’ in lithium extraction

Rice researchers develop novel electrochemical reactor. A team of Rice University researchers led by Lisa Biswal and Haotian Wang has developed an innovative electrochemical reactor to extract lithium from natural…

The blue-green sustainable proteins of seaweed

… may soon be on your plate. The protein in sea lettuce, a type of seaweed, is a promising complement to both meat and other current alternative protein sources. Seaweed…