Researchers identify key enzyme in DNA repair pathway
Researchers have discovered an enzyme crucial to a type of DNA repair that also causes resistance to a class of cancer drugs most commonly used against ovarian cancer.
Scientists from The University of Texas MD Anderson Cancer Center and the Life Sciences Institute of Zhejiang University in China report the discovery of the enzyme and its role in repairing DNA damage called cross-linking in the Science Express advance online publication of Science.
“This pathway that repairs cross-linking damage is a common factor in a variety of cancers, including breast cancer and especially in ovarian cancer. If the pathway is active, it undoes the therapeutic effect of cisplatin and similar therapies,” said co-corresponding author Junjie Chen, Ph.D., professor and chair of MD Anderson's Department of Experimental Radiation Oncology.
The platinum-based chemotherapies cisplatin, carboplatin and oxaliplatin work by causing DNA cross-linking in cancer cells, which blocks their ability to divide and leads to cell death. Cross-linking occurs when one of the two strands of DNA in a cell branches out and links to the other strand.
Cisplatin and similar drugs are often initially effective against ovarian cancer, Chen said, but over time the disease becomes resistant and progresses.
Scientists have known that the protein complex known as FANCI-FANCD2 responds to DNA damage and repairs cross-linking, but the details of how the complex works have been unknown. “The breakthrough in this research is that we finally found an enzyme involved in the repair process,” Chen said.
The enzyme, which they named FAN1, appears to be a nuclease, which is capable of slicing through strands of DNA.
In a series of experiments, Chen and colleagues demonstrated how the protein complex summons FAN1, connects with the enzyme and moves it to the site of DNA cross-linking. They also showed that FAN1 cleaves branched DNA but leaves the normal, separate double-stranded DNA alone. Mutant versions of FAN1 were unable to slice branched DNA.
Like a lock and key
The researchers also demonstrated that FAN1 cannot get at DNA damage without being taken there by the FANCI-FANCD2 protein complex, which detects and moves to the damaged site. The complex recruits the FAN1 enzyme by acquiring a single ubiquitin molecule. FAN1 connects with the complex by binding to the ubiquitin site.
“It's like a lock and key system, once they fit, FAN1 is recruited,” Chen said.
Analyzing the activity of this repair pathway could guide treatment for cancer patients, Chen said, with the platinum-based therapies used when the cross-linking repair mechanism is less active.
Scientists had shown previously that DNA repair was much less efficient when FANCI and FANCD2 lack the single ubiquitin. DNA response and damage-repair proteins can be recruited to damage sites by the proteins' ubiquitin-binding domains. The team first identified a protein that had both a ubiquitin-binding domain and a known nuclease domain. When they treated cells with mitomycin C, which promotes DNA cross-linking, that protein, then known as KIAA1018, gathered at damage sites. This led them to the functional experiments that established its role in DNA repair.
They renamed the protein FAN1, short for Fanconi anemia-associated nuclease 1. The FANCI-FANCD2 complex is ubiquitinated by an FA core complex containing eight FA proteins. These genes and proteins were discovered during research of Fanconi anemia, a rare disease caused by mutations in 13 fanc genes that is characterized by congenital malformations, bone marrow failure, cancer and hypersensitivity to DNA cross-linking agents.
Chen said the FANCI-FANCD2 pathway also is associated with the BRCA1 and BRCA2 pathways, which are involved in homologous recombination repair. Scientists know that homologous recombination repair is also required for the repair of DNA cross-links, but the exact details remain to be resolved, Chen said. Mutations to BRCA1 and BRCA2 are known to raise a woman's risk for ovarian and breast cancers and are found in about 5-10 percent of women with either disease.
Co-authors with Chen are co-first author Gargi Ghosal, Ph.D., and Jingsong Yuan, Ph.D., also of Experimental Radiation Oncology at MD Anderson; and co-corresponding author Jun Huang, Ph.D., co-first author Ting Liu, Ph.D., of the Life Sciences Institute of Zhejiang University in Hangzhou, China.
This research was funded by a grant from the U.S. National Institutes of Health and the Startup Fund at Zhejiang University.
About MD Anderson
The University of Texas MD Anderson Cancer Center in Houston ranks as one of the world's most respected centers focused on cancer patient care, research, education and prevention. MD Anderson is one of only 40 comprehensive cancer centers designated by the National Cancer Institute. For seven of the past nine years, including 2010, MD Anderson has ranked No. 1 in cancer care in “America's Best Hospitals,” a survey published annually in U.S. News & World Report.
Media Contact
More Information:
http://www.mdanderson.orgAll latest news from the category: Life Sciences and Chemistry
Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.
Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.
Newest articles
Future AR/VR controllers could be the palm of your hand
Carnegie Mellon University’s EgoTouch creates simple interfaces for virtual and augmented reality. The new generation of augmented and virtual reality controllers may not just fit in the palm of your…
‘Game changer’ in lithium extraction
Rice researchers develop novel electrochemical reactor. A team of Rice University researchers led by Lisa Biswal and Haotian Wang has developed an innovative electrochemical reactor to extract lithium from natural…
The blue-green sustainable proteins of seaweed
… may soon be on your plate. The protein in sea lettuce, a type of seaweed, is a promising complement to both meat and other current alternative protein sources. Seaweed…