Researchers reveal multi-path mechanism in electrochemical CO2 reduction
A research group led by Prof. XIAO Jianping from the Dalian Institute of Chemical Physics (DICP) of the Chinese Academy of Sciences (CAS) and their collaborators synthesized a single-atom Pb-alloyed Cu catalyst (Pb1Cu), which showed high activity for the electrochemical CO2 reduction reaction (CO2RR) with a selectivity of 96% to formate and stability of up to 180 h at 100 mA cm-2.
This study was published in Nature Nanotechnology on Sept. 16.
The researchers reported multi-path for CO2 reduction to formate, namely the reaction paths through COOH* and HCOO* intermediates. The reaction phase diagram was built based on the “energy global optimization” approach, describing the activity trend for CO2RR to formate. A double-peak activity trend was obtained owing to the consideration of multi-path.
They found that Cu preferred the COOH* path, resulting in the production of hydrocarbons and oxygenates, which exhibit limited selectivity and activity toward a specific product. However, Pb1Cu preferred the HCOO* path. The optimal HCOO* binding energy in Pb1Cu revealed either high activity or selectivity to formate via CO2RR. The agreement between experimental and theoretical activity trend confirms the reliability of multi-path mechanism.
The Cu site on the Pb1Cu step surface, rather than the single-atom Pb site, showed the highest CO2RR activity toward exclusive formate production. The free-energy diagram with the calculated electrochemical barriers also confirms the formate selectivity.
“The ‘double-peak’ describes a more accurate activity trend for CO2RR, providing a significant insight for catalyst design,” said Prof. XIAO.
Journal: Nature Nanotechnology
DOI: 10.1038/s41565-021-00974-5
Method of Research: Commentary/editorial
Subject of Research: Not applicable
Article Title: Copper-catalysed Exclusive CO2 to Pure Formic Acid Conversion via Single-atom Alloying
Media Contact
Jean Wang
Dalian Institute of Chemical Physics, Chinese Academy Sciences
wangyj@dicp.ac.cn
Office: 41182464221
All latest news from the category: Life Sciences and Chemistry
Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.
Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.
Newest articles
Pinpointing hydrogen isotopes in titanium hydride nanofilms
Although it is the smallest and lightest atom, hydrogen can have a big impact by infiltrating other materials and affecting their properties, such as superconductivity and metal-insulator-transitions. Now, researchers from…
A new way of entangling light and sound
For a wide variety of emerging quantum technologies, such as secure quantum communications and quantum computing, quantum entanglement is a prerequisite. Scientists at the Max-Planck-Institute for the Science of Light…
Telescope for NASA’s Roman Mission complete, delivered to Goddard
NASA’s Nancy Grace Roman Space Telescope is one giant step closer to unlocking the mysteries of the universe. The mission has now received its final major delivery: the Optical Telescope…