Rooting out how plants control nitrogen use

A diagram explaining the mechanism at work when plants utilize nitrogenous fertilizers.
Credit: Tohoku University

Insights into gene and protein control systems that regulate the use of nitrogen by plant roots could help develop crops that require less nitrogenous fertilizers to produce acceptable yields. Plant biochemist Soichi Kojima and colleagues at Tohoku University discuss their findings and future plans in an article in the journal Frontiers in Plant Science.

Nitrogen is such a crucial nutrient for plants that vast quantities of nitrogen-containing fertilizers are spread on farmlands worldwide. These fertilizers mostly contain nitrogen as ammonium ions (NH4 +), the chemical form in which nitrogen is most readily taken up by plant roots. However, excess nitrogen in the soil and in drainage run-off into lakes and rivers causes serious ecological imbalances, including algal blooms that de-oxygenate water and kill fish and other aquatic life.

“One of the key goals of modern agricultural research is to develop crops that can grow healthily without relying on so much added nitrogen,” says Kojima. He adds that there are also significant economic and environmental incentives behind this aim, pointing out: “Energy from vast quantities of fossil fuels is currently needed to convert nitrogen in the air into ammonium for fertilizers.”

The researchers worked with the small flowering plant thale cress (Arabidopsis thaliana), a common species used for laboratory studies in plant science.

“Taken together, our results reveal, at the genetic level, regulatory mechanisms at work when plants utilize nitrogenous fertilizers in their roots,” says Kojima.

The team’s next step is to determine if the processes they have identified in Arabidopsis are shared by other plant species, especially major crop plants such as rice and other cereals. If that is confirmed it could open an avenue for plant breeders and geneticists to generate crops that might need much less fertilizer while still producing the yields needed to feed the world. Enhancing the production or activity of the amino acid-making enzymes could be the key to success.

Journal: Frontiers in Plant Science
DOI:  10.3389/fpls.2023.1127006
Article Title: Coregulation of glutamine synthetase1;2 (GLN1;2) and NADH-dependent glutamate synthase (GLT1) gene expression in Arabidopsis roots in response to ammonium supply
Article Publication Date: 20-Feb-2023

Media Contact

Public Relations
Tohoku University
public_relations@grp.tohoku.ac.jp

Media Contact

Public Relations
Tohoku University

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Pinpointing hydrogen isotopes in titanium hydride nanofilms

Although it is the smallest and lightest atom, hydrogen can have a big impact by infiltrating other materials and affecting their properties, such as superconductivity and metal-insulator-transitions. Now, researchers from…

A new way of entangling light and sound

For a wide variety of emerging quantum technologies, such as secure quantum communications and quantum computing, quantum entanglement is a prerequisite. Scientists at the Max-Planck-Institute for the Science of Light…

Telescope for NASA’s Roman Mission complete, delivered to Goddard

NASA’s Nancy Grace Roman Space Telescope is one giant step closer to unlocking the mysteries of the universe. The mission has now received its final major delivery: the Optical Telescope…