Sleeping Beauty in an ice cube
How tardigrades survive freezing temperatures.
Tardigrades are excellent at adapting to harsh environmental conditions. Back in 2019, Ralph Schill, a professor at the Institute of Biomaterials and Biomolecular Systems at the University of Stuttgart, proved that anhydrobiotic (dried) tardigrades can survive undamaged for many years without absorbing water. Whether they age faster or slower in a frozen state, or whether aging even comes to a halt, was previously unclear. But the mystery has now been solved: Frozen tardigrades do not age.
Tardigrades, also called water bears, belong to the family of nematodes. Their gait is reminiscent of that of a bear, but that is the only similarity. The tardigrades, which are barely one millimeter in size, have managed to adapt perfectly to rapidly changing environmental conditions over the course of evolution and can dry out in extreme heat and freeze in cold conditions. “They don’t die, they fall into a deep sleep,” explains Schill.
The Sleeping Beauty hypothesis
For a cell organism, freezing or drying out cause different kinds of stress. But tardigrades can survive both heat and cold equally unscathed. They no longer show any obvious signs of life. And this raises the question of what happens to the animals’ internal clock and whether they age in this resting state.
For dried tardigrades, which wait many years in their habitat for the next rain, Ralph Schill and his team answered the question of aging several years ago. In a fairytale by the Grimm brothers, the princess falls into a deep sleep. When a prince kisses her 100 years later, she awakens and still looks as young and beautiful as before. It is the same with tardigrades in a dried state and therefore this is also called the “Sleeping Beauty” hypothesis (“Sleeping Beauty” model). “During inactive periods, the internal clock stops and only resumes running once the organism is reactivated,” explains Schill. “So, tardigrades, which usually only live for a few months without periods of rest, can live for many years or even decades.”
Until now, it was still unclear whether this also applies to frozen animals. Do they age faster or slower than the dried animals, or does aging also come to a halt?
The aging process stops even when frozen
To explore this, Schill and his team conducted several experiments in which they froze a total of more than 500 tardigrades at -30 °C, thawed them out again, counted them, fed them and froze them again. This was repeated until all the animals died. At the same time, control groups were kept at constant room temperature. Excluding the time in frozen condition, the comparison with the control groups showed an almost identical lifetime. “So even in ice, tardigrades stop their internal clocks like Sleeping Beauty,” concludes Schill.
Schill and his colleagues published their findings and approach in the Journal of Zoology under the title “Reduced ageing in the frozen state in the tardigrade Milnesium inceptum (Eutardigrada: Apochela).”.
Wissenschaftliche Ansprechpartner:
Prof. Dr. Ralph Schill, Universität Stuttgart, Institute of Biomaterials and Biomolecular Systems, phone +49 (0) 172 730 4726, E-Mail ralph.schill@bio.uni-stuttgart.de
Originalpublikation:
Reduced ageing in the frozen state in the tardigrade Milnesium inceptum (Eutardigrada: Apochela, Sieger, J., Brümmer, F., Ahn, H., Lee, G., Kim, S., Schill, R.O., Journal of Zoology (ZSL), September 2022
Media Contact
All latest news from the category: Life Sciences and Chemistry
Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.
Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.
Newest articles
Innovative 3D printed scaffolds offer new hope for bone healing
Researchers at the Institute for Bioengineering of Catalonia have developed novel 3D printed PLA-CaP scaffolds that promote blood vessel formation, ensuring better healing and regeneration of bone tissue. Bone is…
The surprising role of gut infection in Alzheimer’s disease
ASU- and Banner Alzheimer’s Institute-led study implicates link between a common virus and the disease, which travels from the gut to the brain and may be a target for antiviral…
Molecular gardening: New enzymes discovered for protein modification pruning
How deubiquitinases USP53 and USP54 cleave long polyubiquitin chains and how the former is linked to liver disease in children. Deubiquitinases (DUBs) are enzymes used by cells to trim protein…