Sludge-powered bacteria generate more electricity, faster

KAUST researchers have identified a novel electroactive bacterium, called Desulfuromonas acetexigens, that produces a higher current density than a traditionally used bacterium, and in a shorter time.
Credit: © 2020 KAUST

Changing the surface chemistry of electrodes leads to the preferential growth of a novel electroactive bacterium that could support improved energy-neutral wastewater treatment.

To grow, electroactive bacteria break down organic compounds by transferring electrons to solid-state substrates outside their cells. Scientists have utilized this process to drive devices, such as microbial electrochemical systems, where the bacteria grow as a film on an electrode, breaking down the organic compounds in wastewater and transferring the resultant electrons to the electrode.

Scientists are now looking for ways to improve this process so it produces hydrogen gas at a negatively charged cathode electrode, which can then be converted to electricity to power wastewater treatment plants. This needs electroactive bacteria that efficiently transfer electrons to a positively charged anode electrode that do not use hydrogen for their growth.

Krishna Katuri, a research scientist in the lab of Pascal Saikaly, and colleagues have now found a novel electroactive bacterium, called Desulfuromonas acetexigens, that preferentially grows when the surface chemistry of the anode is changed in a specific way. The bacterium produces a higher current density than the most important current-producing bacterium, Geobacter sulfurreducens, and in a shorter time.

“We consider this a breakthrough discovery in the field,” says Katuri.

In tweaking the surface chemistry, the researchers modified graphite electrodes to produce amino, carboxyl and hydroxide groups on their surface. When sludge and acetate, an organic compound used as feed, were placed in a glass chamber together with the electrode, bacteria quickly grew on the electrode’s surface. Analyses revealed that D. acetexigens preferentially grew quickly on the modified electrodes, while G. sulfurreducens grew on conventionally used unmodified electrodes tested as controls.

Further analyses showed that D. acetexigens generated a current density of around 9 amperes per square meter within 20 hours of the process starting, compared with only 5 amperes per square meter in 72 hours by G. sulfurreducens.

Also, D. acetexigens does not use hydrogen as feed. This means that a microbial electrochemical reactor treating wastewater could combine the electrons and protons produced by this bacterium to generate hydrogen gas at the cathode.

“We next plan to study how D. acetexigens transfer electrons and to learn how to maximize their activity at the anode,” says Saikaly. “We’re also fabricating a pilot-scale microbial electrolysis cell reactor to treat domestic wastewater with this bacterium while recovering hydrogen gas as energy. Solar panels will be integrated into the pilot reactor with the aim of using solar and hydrogen energy to achieve energy-neutral or even possibly energy-positive wastewater treatment.”

Media Contact

KAUST Discovery team
King Abdullah University of Science & Technology (KAUST)

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Chimpanzee in a tropical forest demonstrating genetic adaptations for survival.

Parallel Paths: Understanding Malaria Resistance in Chimpanzees and Humans

The closest relatives of humans adapt genetically to habitats and infections Survival of the Fittest: Genetic Adaptations Uncovered in Chimpanzees Görlitz, 10.01.2025. Chimpanzees have genetic adaptations that help them survive…

Fiber-rich foods promoting gut health and anti-cancer effects.

You are What You Eat—Stanford Study Links Fiber to Anti-Cancer Gene Modulation

The Fiber Gap: A Growing Concern in American Diets Fiber is well known to be an important part of a healthy diet, yet less than 10% of Americans eat the minimum recommended…

RNA-binding protein RbpB regulating gut microbiota metabolism in Bacteroides thetaiotaomicron.

Trust Your Gut—RNA-Protein Discovery for Better Immunity

HIRI researchers uncover control mechanisms of polysaccharide utilization in Bacteroides thetaiotaomicron. Researchers at the Helmholtz Institute for RNA-based Infection Research (HIRI) and the Julius-Maximilians-Universität (JMU) in Würzburg have identified a…