Smart yet simple …

By adapting aqueous polymer solution containing DNA, droplets entrapping DNA are generated in a self-organized manner through micro phase-separation, and these droplets are transformed into gel state by decreasing the temperature. The microgels are easily extruded into bulk water, maintaining their size.
Credit

Akihisa Shioi from Doshisha University
Image Source Link to be added in the Image Credit Section of EA form: https://onlinelibrary.wiley.com/cms/asset/f9e61815-bbf5-4c11-a509-e0ee212d68c8/smll202302193-gra-0001-m.jpg

… creating uniform DNA-encapsulating microgels that mimic a living cell.

Researchers devise a new method for producing cell-sized microgel structures using water/water phase separation.

The living cell harbors physiologically relevant components such as the genetic material (DNA) and proteins in a ‘self-organized’ setting. Understanding this process of self-assembly can reveal the underlying mechanism of self-organization of living matter. Water/oil (w/o) or water/water (w/w) droplets may be used as prototypes or “models” that mimic cells and can be used to study cellular self-assembly. These models also have major implications in the field of biomedical research. Although cell mimetics can be generated using complicated and high-cost equipment, the associated methods are costly, tedious, and challenging.

Now, researchers from Japan have recently been able to develop a one-step method for producing uniform gelatin-based cell mimetics called “microgels.” The associated results were published in the journal Small on 24 May 2023. Explaining the motivation behind their study, MS. Mayu Shono and Prof. Akihisa Shioi from Doshisha University, who led the study, remark, “Currently, our research focuses on understanding the self-organization of living matter. As an extension of our research activity, we have discovered an experimental procedure that may be quite useful for the generation of microgels.” The research team also comprised Gen Honda and Miho Yanagisawa of The University of Tokyo, and Kenichi Yoshikawa affiliated with Doshisha University and Kyoto University.

The mechanism of microgel formation is indeed interesting. The initial stage involves the generation of domain structures comprising of polyethylene glycol (PEG) and gelatin — two widely used synthetic crosslinkers. Decreasing the temperature to 24°C favors the selective transition of the gelatin-rich domain into the gel phase. Under a defined set of experimental conditions, the PEG-rich phase migrates preferentially to the glass surface of the capillary tube owing to its higher affinity for glass and lower affinity for the gelatin-rich domains. As a result, gelatin-rich droplets are engulfed by the PEG-rich phase. These findings were also validated in theoretical and numerical modelling studies using glass capillary experiments, which confirmed that the wettability of the inner surface of the glass capillary dominated w/w phase separation.

Moreover, up on the addition of DNA, the gelatin-rich droplets were able to spontaneously entrap DNA molecules owing to the phase separation of PEG and gelatin, giving rise to cell-mimicking microgels. The study also noted that the negatively charged DNA molecules incorporated in the droplets could stabilize them by preventing their fusion even above the sol/gel transition temperature. The team also used a fluorescent dye to label and track the encapsulated DNA. Subsequent fluorescence microscopy experiments revealed the presence of round microgel structures harboring the glowing DNA molecules. According to the authors, the current approach is expected to confine, store, and transport huge DNA molecules within tiny cell-sized droplets!

Excited about the future scope of their research, PhD student Mayu Shono, the first author, says, “This novel method to form uniform cell-sized microgels may be applicable to other biopolymers. The uniform cell-sized and stable cell-like systems will also have key implications in the area of biological and life sciences.”

In summary, the study discusses a novel method for the preparation of gelatin-based cell mimetics, which can be tweaked to suit the desired purpose, depending on the area of application. “The method proposed in our study, which does not require special equipment, organic solvents, or surfactants, may be useful for producing microgels for food, medicines, cosmetics, and other materials,” Prof. Shioi concludes.

 

About Mayu Shono from Doshisha University, Japan
Mayu Shono is a PhD student at Doshisha University’s Department of Chemical Engineering and Materials Science. She has been carrying out scientific research concerning spatiotemporal self-organization on various hierarchical systems with the scale of nm-cm by combining experimental studies with theoretical analysis.” Mayu has published 4 articles on Scientific Reports, Applied Physics Letters etc.

About Professor Akihisa Shioi from Doshisha University, Japan
Dr. Akihisa Shioi serves as a Professor at Doshisha University’s Department of Chemical Engineering and Materials Science. His research group primarily focuses on projects in the area of chemical engineering, colloid and interface science, physical chemistry, nonequilibrium science, nanotechnology, energy chemistry, manufacturing technology, and natural sciences. Prof. Shioi is a well-cited researcher with over 100 research articles and 10 books to his credit.

Funding information
This study was supported by the Japan Science and Technology Agency (JST) toward creating the science and technology innovation fellowships (no. JPMJFS2145, M.S.) and the JST SPRING (no. JPMJSP2129, M.S.). The Japan Society funded this research for the Promotion of Science (JSPS) KAKENHI (no. 23KJ2081, M.S.), (no. JP20H01877, K.Y.), (no. 22H01188, M.Y.), and (no. 22K03560, A.S.), and the JST FOREST (no. JPMJFR213Y, M.Y.).

Media contact:
Organization for Research Initiatives & Development
Doshisha University
Kyotanabe, Kyoto 610-0394, JAPAN
E-mail:jt-ura@mail.doshisha.ac.jp

Journal: Small
DOI: 10.1002/smll.202302193
Method of Research: Experimental study
Subject of Research: Not applicable
Article Title: Spontaneous Formation of Uniform Cell-Sized Microgels through Water/Water Phase Separation
Article Publication Date: 24-May-2023
COI Statement: The authors declare no conflict of interest.

Media Contact

Jun Kita
Doshisha University
rs-kj61@mail.doshisha.ac.jp

www.doshisha.ac.jp

Media Contact

Jun Kita
Doshisha University

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Pinpointing hydrogen isotopes in titanium hydride nanofilms

Although it is the smallest and lightest atom, hydrogen can have a big impact by infiltrating other materials and affecting their properties, such as superconductivity and metal-insulator-transitions. Now, researchers from…

A new way of entangling light and sound

For a wide variety of emerging quantum technologies, such as secure quantum communications and quantum computing, quantum entanglement is a prerequisite. Scientists at the Max-Planck-Institute for the Science of Light…

Telescope for NASA’s Roman Mission complete, delivered to Goddard

NASA’s Nancy Grace Roman Space Telescope is one giant step closer to unlocking the mysteries of the universe. The mission has now received its final major delivery: the Optical Telescope…