Soft core, hard shell – the latest in nanotechnology

Nanoparticles are the smallest particles capable of reaching virtually all parts of the body. Researchers use various approaches to test ways in which nanoparticles could be used in medicine – for instance, to deliver substances to a specific site in the body such as a tumor.

For this purpose, nanoparticles are generally coated with organic materials because their surface quality plays a key role in determining further targets in the body. If they have a water-repellent shell, nanoparticles are quickly identified by the body’s immune system and eliminated.

How gold particles wander through the body

The team of scientists headed by Dr. Wolfgang Kreyling, who is now an external scientific advisor at the Institute of Epidemiology II within the Helmholtz Zentrum München, and Prof. Wolfgang Parak from the University of Marburg, succeeded for the first time in tracking the chronological sequence of such particles in an animal model.

To this end, they generated tiny 5 nm gold nanoparticles radioactively labeled with a gold isotope*. These were also covered with a polymer shell and tagged with a different radioactive isotope. According to the researchers, this was, technically speaking, a very demanding nanotechnological step.

After the subsequent intravenous injection of the particles, however, the team observed how the specially applied polymer shell disintegrated. “Surprisingly, the particulate gold accumulated mainly in the liver,” Dr. Kreyling recalls. “In contrast, the shell molecules reacted in a significantly different manner, distributing themselves throughout the body.”

Further analyses conducted by the scientists explained the reason for this: so-called proteolytic enzymes** in certain liver cells appear to separate the particles from their shell. According to the researchers, this effect was hitherto unknown in vivo, since up to now the particle-conjugate had only been tested in cell cultures, where this effect had not been examined sufficiently thoroughly.

“Our results show that even nanoparticle-conjugates*** that appear highly stable can change their properties when deployed in the human body,” Dr. Kreyling notes, evaluating the results. “The study will thus have an influence on future medical applications as well as on the risk evaluation of nanoparticles in consumer products and in science and technology.”

Further information

Background
* Isotopes are types of atoms which have different mass numbers but which represent the same element.
** Proteolytic enzymes split protein structures and are used, for example, to nourish or detoxify the body.
*** Conjugates are several types of molecules that are bound in one particle.

Original Publication
Kreyling, W. et al. (2015). In vivo integrity of polymer-coated gold nanoparticles, Nature Nanotechnology
DOI: 10.1038/nnano.2015.111

As German Research Center for Environmental Health, Helmholtz Zentrum München pursues the goal of developing personalized medical approaches for the prevention and therapy of major common diseases such as diabetes mellitus and lung diseases. To achieve this, it investigates the interaction of genetics, environmental factors and lifestyle. The Helmholtz Zentrum München has about 2,300 staff members and is headquartered in Neuherberg in the north of Munich. Helmholtz Zentrum München is a member of the Helmholtz Association, a community of 18 scientific-technical and medical-biological research centers with a total of about 37,000 staff members.

The Institute of Epidemiology II (EPI II) focuses on the assessment of environmental and lifestyle risk factors which jointly affect major chronic diseases such as diabetes, heart disease and mental health. Research builds on the unique resources of the KORA cohort, the KORA myocardial infarction registry, and the KORA aerosol measurement station. Aging-related phenotypes have been added to the KORA research portfolio within the frame of the Research Consortium KORA-Age. The institute’s contributions are specifically relevant for the population as modifiable personal risk factors are being researched that could be influenced by the individual or by improving legislation for the protection of public health.

Contact for the media:
Department of Communication, Helmholtz Zentrum München – German Research Center for Environmental Health (GmbH), Ingolstädter Landstr. 1, 85764 Neuherberg – Phone: +49-(0)89-3187-2238 – Fax: +49 89-3187-3324 – Email: presse@helmholtz-muenchen.de

Scientific contact at Helmholtz Zentrum München:
Dr. Wolfgang G. Kreyling, Helmholtz Zentrum München – German Research Center for Environmental Health (GmbH), External Scientific Advisor of the Institute of Epidemiology II, Ingolstädter Landstr. 1, 85764 Neuherberg – Email: kreyling@helmholtz-muenchen.de

http://www.helmholtz-muenchen.de/en/index.html – Website Helmholtz Zentrum München
http://www.helmholtz-muenchen.de/epi2 – Website Institute of Epidemiology II
http://www.helmholtz-muenchen.de/aktuelles/pressemitteilungen/2015/index.html – Press Releases of the Helmholtz Zentrum München

Media Contact

Helmholtz Kommunikation Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

NASA: Mystery of life’s handedness deepens

The mystery of why life uses molecules with specific orientations has deepened with a NASA-funded discovery that RNA — a key molecule thought to have potentially held the instructions for…

What are the effects of historic lithium mining on water quality?

Study reveals low levels of common contaminants but high levels of other elements in waters associated with an abandoned lithium mine. Lithium ore and mining waste from a historic lithium…

Quantum-inspired design boosts efficiency of heat-to-electricity conversion

Rice engineers take unconventional route to improving thermophotovoltaic systems. Researchers at Rice University have found a new way to improve a key element of thermophotovoltaic (TPV) systems, which convert heat…