Stabilizing chromosomes to tackle tumors
Cells use RNA as a versatile tool to regulate the activity of their genes. Small snippets of RNA can fine-tune how much protein is produced from various genes; some small RNAs can shut genes off altogether. An enzyme called Dicer chops RNA into smaller pieces: plants use it to chew up the RNA of invading viruses; worms use it to shut genes off during development; and humans use it to produce gene-regulating microRNAs. Dicer is also of interest because mutations in the gene for the enzyme appear to contribute to some human cancers, although it hasn’t been clear exactly why.
In a new study published February 22, 2022 in the journal Nature Communications, researchers led by Cold Spring Harbor Laboratory Professor Rob Martienssen found an unexpected role for Dicer in mammalian cells: they’ve discovered that the enzyme is important for maintaining the structural integrity of the genome.
When Martienssen’s team removed Dicer from the embryonic stem cells of mice, the cells became sick. Chromosomes inside dividing cells couldn’t properly align themselves for equal distribution to daughter cells. Cell division slowed, and many cells died. Martiennsen’s team had seen this before when they removed Dicer from yeast cells. And when they explored further, they found that Dicer stabilizes the mouse genome in much the same way it maintains the genome in yeast, suggesting that this is an evolutionarily ancient role for the enzyme.
“The new function that we have identified for Dicer genome stability, independently of other well-known small RNA pathways could be an explanation of why Dicer mutations are an important factor in certain types of cancer,” says Benjamin Roche, a researcher in Martienssen’s lab.
Normally, Dicer works with a gene-activating protein called BRD4. The research team found that when Dicer was broken and BRD4 was intact, chromosomes were unstable. Removing a small piece of BRD4 (called bromodomain 2) restored chromosome stability. Like Dicer, BRD4 is often mutated in human cancers. Martienssen says, “Our findings suggest that inhibitors that target BRD4 bromodomain 2 might have specific therapeutic effects when Dicer is compromised in cancer.” The work suggests a new diagnostic and treatment strategy for cancers with compromised Dicer systems using BRD4-targeted drugs.
Journal: Nature Communications
DOI: 10.1038/s41586-021-04010-3
Article Title: Dicer promotes genome stability via the bromodomain transcriptional co-activator BRD4
Article Publication Date: 22-Feb-2022
Media Contact
Sara Roncero-Menendez
Cold Spring Harbor Laboratory
roncero@cshl.edu
Office: 516-367-6866
All latest news from the category: Life Sciences and Chemistry
Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.
Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.
Newest articles
Pinpointing hydrogen isotopes in titanium hydride nanofilms
Although it is the smallest and lightest atom, hydrogen can have a big impact by infiltrating other materials and affecting their properties, such as superconductivity and metal-insulator-transitions. Now, researchers from…
A new way of entangling light and sound
For a wide variety of emerging quantum technologies, such as secure quantum communications and quantum computing, quantum entanglement is a prerequisite. Scientists at the Max-Planck-Institute for the Science of Light…
Telescope for NASA’s Roman Mission complete, delivered to Goddard
NASA’s Nancy Grace Roman Space Telescope is one giant step closer to unlocking the mysteries of the universe. The mission has now received its final major delivery: the Optical Telescope…