Stem cell therapy makes cloudy corneas clear
The findings suggest that cell-based therapies might be an effective way to treat human corneal blindness and vision impairment due to the scarring that occurs after infection, trauma and other common eye problems, said senior investigator James L. Funderburgh, Ph.D., associate professor, Department of Ophthalmology. The Pitt corneal stem cells were able to remodel scar-like tissue back to normal.
“Our experiments indicate that after stem cell treatment, mouse eyes that initially had corneal defects looked no different than mouse eyes that had never been damaged,” Dr. Funderburgh said.
The ability to grow millions of the cells in the lab could make it possible to create an off-the-shelf product, which would be especially useful in countries that have limited medical and surgical resources but a great burden of eye disease due to infections and trauma.
“Corneal scars are permanent, so the best available solution is corneal transplant,” Dr. Funderburgh said. “Transplants have a high success rate, but they don't last forever. The current popularity of LASIK corrective eye surgery is expected to substantially reduce the availability of donor tissue because the procedure alters the cornea in a way that makes it unsuitable for transplantation.”
A few years ago, Dr. Funderburgh and other University of Pittsburgh researchers identified stem cells in a layer of the cornea called the stroma, and they recently showed that even after many rounds of expansion in the lab, these cells continued to produce the biochemical components, or matrix, of the cornea. One such protein is called lumican, which plays a critical role in giving the cornea the correct structure to make it transparent.
Mice that lack the ability to produce lumican develop opaque areas of their corneas comparable to the scar tissue that human eyes form in response to trauma and inflammation, Dr. Funderburgh said. But three months after the lumican-deficient mouse eyes were injected with human adult corneal stem cells, transparency was restored.
The cornea and its stromal stem cells themselves appear to be “immune privileged,” meaning they don't trigger a significant immune response even when transplanted across species, as in the Pitt experiments.
“Several kinds of experiments indicated that the human cells were alive and making lumican, and that the tissue had rebuilt properly,” Dr. Funderburgh noted.
In the next steps, the researchers intend to use the stem cells to treat lab animals that have corneal scars to see if they, too, can be repaired with stem cells. Under the auspices of UPMC Eye Center's recently established Center for Vision Restoration, they plan also to develop the necessary protocols to enable clinical testing of the cells.
Other authors of the paper include Yiqin Du, M.D., Ph.D., and Martha L. Funderburgh, M.S.P.H., both of the University of Pittsburgh; Eric C. Carlson, Ph.D., and Eric Pearlman, Ph.D., both of Case Western Reserve University; David E. Birk, Ph.D., of the University of South Florida; Naxin Guo, M.D., Ph.D., of the University of Rochester; and Winston W-Y Kao, Ph.D., of the University of Cincinnati.
The research was supported by grants from the National Institutes of Health, the Eye and Ear Foundation (Pittsburgh), and an unrestricted grant from Research to Prevent Blindness, N.Y. Dr. Funderburgh holds the Jules and Doris Stein Professorship from Research to Prevent Blindness.
The University of Pittsburgh School of Medicine is one of the nation's leading medical schools, renowned for its curriculum that emphasizes both the science and humanity of medicine and its remarkable growth in National Institutes of Health (NIH) grant support, which has more than doubled since 1998. For fiscal year 2007, the University ranked sixth out of more than 3,000 entities receiving NIH support with respect to the research grants awarded to its faculty. As one of the university's six Schools of the Health Sciences, the School of Medicine is the academic partner to the University of Pittsburgh Medical Center (UPMC). Their combined mission is to train tomorrow's health care specialists and biomedical scientists, engage in groundbreaking research that will advance understanding of the causes and treatments of disease and participate in the delivery of outstanding patient care.
Media Contact
More Information:
http://www.upmc.eduAll latest news from the category: Life Sciences and Chemistry
Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.
Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.
Newest articles
Skull bone marrow expands throughout life
…and remains healthy during aging. Blood vessels and stromal cells in the bone marrow create an ideal environment for hematopoietic stem cells to continuously produce all blood cells. During aging,…
Future AR/VR controllers could be the palm of your hand
Carnegie Mellon University’s EgoTouch creates simple interfaces for virtual and augmented reality. The new generation of augmented and virtual reality controllers may not just fit in the palm of your…
‘Game changer’ in lithium extraction
Rice researchers develop novel electrochemical reactor. A team of Rice University researchers led by Lisa Biswal and Haotian Wang has developed an innovative electrochemical reactor to extract lithium from natural…