Study shows promise for a universal influenza vaccine

Jonah Sacha, Ph.D., senior co-author of a study published today in the journal Nature Communications, says the research could lead to a universal influenza vaccine within five years.
Credit: OHSU/Christine Torres Hicks

OHSU-led research uses innovative vaccine platform to target interior of virus; scientists validate theory using 1918 flu virus.

New research led by Oregon Health & Science University reveals a promising approach to developing a universal influenza vaccine — a so-called “one and done” vaccine that confers lifetime immunity against an evolving virus.

The study, published today in the journal Nature Communications, tested an OHSU-developed vaccine platform against the virus considered most likely to trigger the next pandemic.

Researchers reported the vaccine generated a robust immune response in nonhuman primates that were exposed to the avian H5N1 influenza virus. But the vaccine wasn’t based on the contemporary H5N1 virus; instead, the primates were inoculated against the influenza virus of 1918 that killed millions of people worldwide.

“It’s exciting because in most cases, this kind of basic science research advances the science very gradually; in 20 years, it might become something,” said senior author Jonah Sacha, Ph.D., professor and chief of the Division of Pathobiology at OHSU’s Oregon National Primate Research Center. “This could actually become a vaccine in five years or less.”

Researchers reported that six of 11 nonhuman primates inoculated against the virus that circulated a century ago — the 1918 flu — survived exposure to one of the deadliest viruses in the world today, H5N1. In contrast, a control group of six unvaccinated primates exposed to the H5N1 virus succumbed to the disease.

Sacha said he believes the platform “absolutely” could be useful against other mutating viruses, including SARS-CoV-2.

“It’s a very viable approach,” he said. “For viruses of pandemic potential, it’s critical to have something like this. We set out to test influenza, but we don’t know what’s going to come next.”

A senior co-author from the University of Pittsburgh concurred.

“Should a deadly virus such as H5N1 infect a human and ignite a pandemic, we need to quickly validate and deploy a new vaccine,” said co-corresponding author Douglas Reed, Ph.D., associate professor of immunology at the University of Pittsburgh Center for Vaccine Research.

Finding a stationary target

This approach harnesses a vaccine platform previously developed by scientists at OHSU to fight HIV and tuberculosis, and in fact is already being used in a clinical trial against HIV.

The method involves inserting small pieces of target pathogens into the common herpes virus cytomegalovirus, or CMV, which infects most people in their lifetimes and typically produces mild or no symptoms. The virus acts as a vector specifically designed to induce an immune response from the body’s own T cells.

This approach differs from common vaccines — including the existing flu vaccines — which are designed to induce an antibody response that targets the most recent evolution of the virus, distinguished by the arrangement of proteins covering the exterior surface.

“The problem with influenza is that it’s not just one virus,” Sacha said. “Like the SARS-CoV-2 virus, it’s always evolving the next variant and we’re always left to chase where the virus was, not where it’s going to be.”

The spike proteins on the virus exterior surface evolve to elude antibodies. In the case of flu, vaccines are updated regularly using a best estimate of the next evolution of the virus. Sometimes it’s accurate, sometimes less so.

In contrast, a specific type of T cell in the lungs, known as effector memory T cell, targets the internal structural proteins of the virus, rather than its continually mutating outer envelope. This internal structure doesn’t change much over time — presenting a stationary target for T cells to search out and destroy any cells infected by an old or newly evolved influenza virus.

Success with a century-old template

To test their T cell theory, researchers designed a CMV-based vaccine using the 1918 influenza virus as a template. Working within a highly secure biosafety level 3 laboratory at the University of Pittsburgh, they exposed the vaccinated nonhuman primates to small particle aerosols containing the avian H5N1 influenza virus — an especially severe virus that is currently circulating among dairy cows in the United States.

Remarkably, six of the 11 vaccinated primates survived the exposure, despite the century-long period of virus evolution.

“It worked because the interior protein of the virus was so well preserved,” Sacha said. “So much so, that even after almost 100 years of evolution, the virus can’t change those critically important parts of itself.”

The study raises the potential for developing a protective vaccine against H5N1 in people.

“Inhalation of aerosolized H5N1 influenza virus causes a cascade of events that can trigger respiratory failure,” said co-senior author Simon Barratt-Boyes, Ph.D., professor of infectious diseases, microbiology and immunology at Pitt. “The immunity induced by the vaccine was sufficient to limit virus infection and lung damage, protecting the monkeys from this very serious infection.”

By synthesizing more up-to-date virus templates, the new study suggests CMV vaccines may be able to generate an effective, long-lasting immune response against a wide suite of new variants.

“I think it means within five to 10 years, a one-and-done shot for influenza is realistic,” Sacha said.

The same CMV platform developed by OHSU researchers has advanced to a clinical trial to protect against HIV, and a recent publication by those scientists suggests it may even be useful targeting specific cancer cells. The HIV clinical trial is being led by Vir Biotechnology, which licensed the vaccine platform from OHSU.

Sacha sees the development as the latest in the rapid advance of medical research to treat or prevent disease.

“It’s a massive sea change within our lifetimes,” Sacha said. “There is no question we are on the cusp of the next generation of how we address infectious disease.”

In addition to OHSU, research institutions involved in the study included the Tulane National Primate Research Center, the University of Pittsburgh, the University of Washington, and the Washington National Primate Research Center at the UW.

In the interest of ensuring the integrity of our research and as part of our commitment to public transparency, OHSU actively regulates, tracks and manages relationships that our researchers may hold with entities outside of OHSU. In regard to this research, OHSU and OHSU faculty involved in this research, including Jonah Sacha, Ph.D., have a significant financial interest in VIR Biotechnology Inc., a company that may have a commercial interest in the results of this research and technology.

All research involving animal subjects is reviewed and approved by a university’s Institutional Animal Care and Use Committee (IACUC). The IACUC’s priority is to ensure the health and safety of animal research subjects. The IACUC also reviews procedures to ensure the health and safety of the people who work with the animals. The IACUC conducts a rigorous review of all animal research proposals to ensure they demonstrate scientific value and justify the use of live animals.

The research was supported by the Bill & Melinda Gates Foundation Grand Challenges grant awards OPP1213553 and National Institute of Allergy And Infectious Diseases of the National Institutes of Health award R01AI40888; with support from the Office of the Director of the National Institutes of Health award P51OD011092 to the Oregon National Primate Research Center at OHSU. The findings and conclusions contained within are those of the authors and do not necessarily reflect positions or policies of the Bill & Melinda Gates Foundation or the National Institutes of Health.

Journal: Nature Communications
DOI: 10.1038/s41467-024-50345-6
Method of Research: Experimental study
Subject of Research: People
Article Title: Cytomegalovirus vaccine vector-induced effector memory CD4+ T cells protect cynomolgus macaques from lethal aerosolized heterologous avian influenza
Article Publication Date: 19-Jul-2024
COI Statement: In the interest of ensuring the integrity of our research and as part of our commitment to public transparency, OHSU actively regulates, tracks and manages relationships that our researchers may hold with entities outside of OHSU. In regard to this research, OHSU and OHSU faculty involved in this research, including Jonah Sacha, Ph.D., have a significant financial interest in VIR Biotechnology Inc., a company that may have a commercial interest in the results of this research and technology.

Media Contact

Erik Robinson
Oregon Health & Science University
robineri@ohsu.edu
Cell: 971-373-3534

www.ohsu.edu

Media Contact

Erik Robinson
Oregon Health & Science University

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Unidirectional imaging technology breakthrough

UCLA researchers developed unidirectional imaging technology, a crucial capability for applications requiring asymmetric visual information processing and optical communication. Traditional imaging systems are bidirectional—if I can see you, you can…

Implantable microparticles can deliver two cancer therapies at once

The combination of phototherapy and chemotherapy could offer a more effective way to fight aggressive tumors. Patients with late-stage cancer often have to endure multiple rounds of different types of…

Researchers Aim To Get Leg Up on Bone Repair with 3D-Printed Femur

University of Texas at Dallas mechanical engineers have designed a 3D-printed femur that could help doctors prepare for surgeries to repair bones and develop treatments for bone tumors. The engineers,…