Surprising discovery of low-noise genes
While engaging in cell division research, Silke Hauf and members of her lab made a surprisingly quiet discovery. When cells express RNA, there is always some fluctuation, or noise, in how much RNA is produced. Hauf’s group found several genes whose noise dips below a previously established threshold, known as the noise floor, during expression.
“We have solid data for this phenomenon,” said Hauf, associate professor in the Department of Biological Sciences at Virginia Tech. “There are some genes that are different and can have super low noise.”
Often upstaged by the more striking, well-publicized high-noise genes, Hauf and her team were intrigued by these ultra-low noise genes as they provide a window into the understanding of gene expression and gene expression noise.
This discovery, published in the journal Science Advances on Aug. 9, includes contributions from co-authors Abhyudai Singh, professor of electrical and computer engineering at the University of Delaware, and Ramon Grima, professor of computational biology at the University of Edinburgh. Both Singh and Grima are also mathematical biologists.
Cells will be cells
Hauf said the discovery’s importance lies in helping gain a basic understanding of how these cells do what they do. Cells can’t avoid making noise, but for them to function well, the noise needs to be minimized. She compared it with airports attempting to keep their flights on time in order to gain maximum functionality.“So it’s exciting to see that there are genes that operate with a minimum level of noise,” said Hauf. “Imagine there was a flight that always left within five minutes of the scheduled departure time. Wouldn’t you want to know how the airline does it?”
Opens the door to more discoveries
Hauf is excited about understanding how these cells express in such a quiet manner and learning more about the mechanisms behind it. She also would like to find other genes in this category.
“We saw these minimal fluctuations in one particular organism and cell type, but we really need to check other cells to determine if it is universal,” Hauf said.
This research has been funded by grants from the National Institute of General Medical Sciences, a unit within the National Institutes of Health, and Virginia Tech’s College of Science Lay Nam Chang Dean’s Discovery Fund.
Media Contacts
Margaret Ashburn
Virginia Tech
mkashburn@vt.edu
Jenise Jacques
Virginia Tech
jenise@vt.edu
All latest news from the category: Life Sciences and Chemistry
Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.
Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.
Newest articles
Innovative 3D printed scaffolds offer new hope for bone healing
Researchers at the Institute for Bioengineering of Catalonia have developed novel 3D printed PLA-CaP scaffolds that promote blood vessel formation, ensuring better healing and regeneration of bone tissue. Bone is…
The surprising role of gut infection in Alzheimer’s disease
ASU- and Banner Alzheimer’s Institute-led study implicates link between a common virus and the disease, which travels from the gut to the brain and may be a target for antiviral…
Molecular gardening: New enzymes discovered for protein modification pruning
How deubiquitinases USP53 and USP54 cleave long polyubiquitin chains and how the former is linked to liver disease in children. Deubiquitinases (DUBs) are enzymes used by cells to trim protein…