The molecular memory of plants

Arabidopsis seedlings with priming at moderate temperatures and subsequent heat stress (44°C) (left panel) compared to seedlings with heat stress without priming (right panel).
(c) Justyna Jadwiga Olas

Heat stress procures the capacity for remembering in plant cells.

How a plant grows depends on its genetic blueprint on the one hand, and on how the environment influences molecular and physiological processes on the other. Of particular importance are the so-called meristems, those divisible tissues that contain the plant stem cells. The shoot apical meristem is crucial for the growth of the organs above ground. Researchers led by Bernd Mueller-Roeber at the Max Planck Institute of Molecular Plant Physiology (MPI-MP) and the University of Potsdam have investigated how the shoot apical meristem responds to heat stress and found that it develops a stress memory. Because of this memory capacity, it is able to respond better to another subsequent stress and even survive lethal stress events. The researchers have now published their findings in Molecular Plant.

Many external factors determine the growth of a plant. Light, nutrient and water supply, temperature, and the availability of carbon dioxide. In particular, sudden environmental stress, such as heat, has a negative effect on the plant and its growth. If plant cells are able not only to respond to one stress but also to remember it, they are enabled to respond better to a second, subsequent stress and even survive an otherwise lethal stress. However, little is known about the memory capacity of plant cells.

Having a stress memory is an extremely important adaptation to fluctuating environmental conditions. One warm day is very likely to be followed by other warm or even hot days. But how do plants do this without having a brain?
“In general, individual cells are able to respond to an acute stress. This happens at different levels. For example, metabolism can be altered or corresponding genes can be switched on or off, resulting in the synthesis or reduction of crucial proteins in the cell,” explains Justyna Jadwiga Olas, first author of the study.

The shoot apex meristem has its own heat memory

The shoot apical meristem with its stem cells generates its own strong heat stress memory at the transcriptional level, independent of other neighboring organs. “Because of its function, the meristem is a particularly important tissue that must remain functional for plant growth to be maintained. We have now shown that genes of carbohydrate metabolism, protein folding and meristem maintenance serve as important components of heat stress memory in the shoot apex,” Bernd Mueller-Roeber summarizes.
The meristem itself has no chloroplasts in which photosynthesis and thus sugar production take place. Accordingly, it is dependent on the sugar supply of the surrounding leaves. In the studies, it became clear that sugar availability is an important factor for the temperature memory of the meristem.

In a comprehensive gene expression analysis, the researchers were able to identify responsible genes of the heat stress memory. These encode an aldolase (FBA6), an enzyme of carbohydrate metabolism, which is thus responsible for energy supply, a heat shock protein (HSP17.6A), which protects other proteins from destruction under heat, and two stem cell regulators (CLAVATA 1 and 3). “Compared to other organs, such as leaves, we showed that there is independent, tissue-specific regulation in the meristem. Both the components and the rates of the individual reactions differ greatly from the reactions in other organs,” describes Justyna Jadwiga Olas.

Heat stress limits growth and yield

The fact that plants build up a memory through an initial mild stress is particularly important from an ecological point of view. A later severe stress, which could even lead to death, can thus be mitigated. Above all, protection of the meristem is important so that the plant can continue to grow and form new leaves afterwards, especially when dead organs need to be replaced. The renewal ability of stem cells makes this possible.

“It also became clear that because of heat memory, a second, more severe stress only delays plant growth, but does not inhibit it in the long term. Growth inhibition during a heat period makes absolute sense and is necessary for survival, as this also prevents flower formation during this time and thus counteracts a possible loss of yield,” Mueller-Roeber explains. The ability of a plant to form a memory and thus adapt to upcoming stress conditions is therefore of great interest, especially for agriculture, in order to be able to breed more climate-resistant plants in the future. A more precise understanding of the underlying mechanisms could form the basis for future variety development.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Bernd Mueller-Roeber
Max Planck Institute of Molecular Plant Physiology/University of Potsdam
Tel. +49 331 567 8351 or +49 331 977 2650
Mueller@mpimp-golm.mpg.de; bmr@uni-potsdam.de

Originalpublikation:

Justyna Jadwiga Olas, Federico Apelt, Maria Grazia Annunziata, Sheeba John, Sarah
Isabel Richard, Saurabh Gupta, Friedrich Kragler, Salma Balazadeh, Bernd Mueller Roeber
Primary carbohydrate metabolism genes participate in heat stress memory at the shoot
apical meristem of Arabidopsis thaliana
Molecular Plant, 26.Mai 2021, doi: https://doi.org/10.1016/j.molp.2021.05.024

Weitere Informationen:

https://www.mpimp-golm.mpg.de/2650252/news_publication_17276706_transferred?c=62…

Media Contact

Dipl. Ing. agr. Ursula Ross-Stitt Büro für Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Molekulare Pflanzenphysiologie

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Pinpointing hydrogen isotopes in titanium hydride nanofilms

Although it is the smallest and lightest atom, hydrogen can have a big impact by infiltrating other materials and affecting their properties, such as superconductivity and metal-insulator-transitions. Now, researchers from…

A new way of entangling light and sound

For a wide variety of emerging quantum technologies, such as secure quantum communications and quantum computing, quantum entanglement is a prerequisite. Scientists at the Max-Planck-Institute for the Science of Light…

Telescope for NASA’s Roman Mission complete, delivered to Goddard

NASA’s Nancy Grace Roman Space Telescope is one giant step closer to unlocking the mysteries of the universe. The mission has now received its final major delivery: the Optical Telescope…