For the first time, researchers identify and isolate adult mammary stem cells in mice
For the first time, researchers at Fred Hutchinson Cancer Research Center have identified and isolated adult mammary stem cells in mice.
Long-term implications of this research may include the use of such cells to regenerate breast tissue, provide a better understanding of the role of adult stem cells in breast cancer development, and develop potential new targets for anti-cancer drugs.
The findings, by Larry Rohrschneider, Ph.D., a member of the Basic Sciences Division at the Hutchinson Center, and Lixia Bai, M.D., Ph.D., a research associate in his lab, are published in the Sept. 1 issue of Genes & Development.
Using a genetically modified mouse model, the researchers tagged stem cells with green fluorescent protein (GFP), which exhibits bright green fluorescence during gene expression and can be easily seen under a microscope. GFP expression is controlled by the promoter of a newly identified gene, specifically expressed in stem cells, called s-SHIP.
“Until now, we have not been able to identify stem cells in mammary tissue. They have never been detected before with such specificity. It is extraordinary. You can see these green stem cells under the microscope in their pure, natural state,” said Rohrschneider, who has filed a patent on the s-SHIP promoter-GFP-labeling technology.
Previous systems for isolating stem cells have relied on a variety of biomarkers, none of which have yielded a pure stem cell population. This limitation has prohibited accurate gene-expression analysis of such cells.
The researchers demonstrated the presence of active green stem cells at crucial stages of mammary development, such as puberty and pregnancy. During quiescent stages of development, however, the cells did not “light up.”
Such stem cells represent a new alternative to induced pluripotent stem cells, or genetically altered stem cells, for various medical applications.
For example, by isolating the pure green mammary cells from donor female transgenic mice, the researchers have demonstrated the regenerative ability of these cells by transplanting them into the mammary fat tissue of recipient mice whose own mammary epithelium has been removed.
“We have found that those transplanted green stem cells can generate new mammary tissue and this tissue can produce milk, just like normal mammary epithelial cells,” said co-author Bai. “Identification of the exact stem cell and its location is the first critical and fundamental step toward understanding the regulatory mechanisms of these important cells.”
In addition to potential clinical applications regarding tissue regeneration, the researchers see these isolated stem cells as a window to better understanding how normal stem cells can become cancer stem cells, which are hypothesized to exist in tumors.
“Our belief right now is that perhaps the most aggressive tumors may be coming from the malignant transformation of stem cells in healthy tissue,” Rohrschneider said. “This new technology offers a unified model for identifying normal and cancer stem cells.”
Cancer stem cells are thought to be responsible for tumor initiation, growth, metastasis, therapy resistance and disease relapse.
“Because stem cells are critical for both normal tissue development and cancer development, exploring how they are regulated in normal development will help us to better understand how they are transformed into breast cancer cells,” Bai said. “By searching for new methods to effectively and specifically target cancer stem cells, we hope we can cure breast cancer someday.” she said.
The National Institutes of Health, the National Cancer Institute, the Hutchinson Center and financial support from anonymous donors supported this work.
At Fred Hutchinson Cancer Research Center, our interdisciplinary teams of world-renowned scientists and humanitarians work together to prevent, diagnose and treat cancer, HIV/AIDS and other diseases. Our researchers, including three Nobel laureates, bring a relentless pursuit and passion for health, knowledge and hope to their work and to the world. www.fhcrc.org
Photo available upon request: A color photo of GFP-positive (green) mammary stem cells in puberty mammary tissue is available upon request.
Media Contact
More Information:
http://www.fhcrc.orgAll latest news from the category: Life Sciences and Chemistry
Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.
Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.
Newest articles
Innovative 3D printed scaffolds offer new hope for bone healing
Researchers at the Institute for Bioengineering of Catalonia have developed novel 3D printed PLA-CaP scaffolds that promote blood vessel formation, ensuring better healing and regeneration of bone tissue. Bone is…
The surprising role of gut infection in Alzheimer’s disease
ASU- and Banner Alzheimer’s Institute-led study implicates link between a common virus and the disease, which travels from the gut to the brain and may be a target for antiviral…
Molecular gardening: New enzymes discovered for protein modification pruning
How deubiquitinases USP53 and USP54 cleave long polyubiquitin chains and how the former is linked to liver disease in children. Deubiquitinases (DUBs) are enzymes used by cells to trim protein…