Tiny beads preserve enzymes for biocatalysis

The sample consisting of the beads (with enzymes bound to them) and buffer is placed on a small metal plate to ensure good conductivity during the subsequent plasma treatment.
Credit: © RUB, Marquard

Model enzyme from an edible fungus.

“In plasma-driven biocatalysis, we intend to use technical plasmas to drive enzymes that use hydrogen peroxide to convert a substrate into a more valuable product,” explains Julia Bandow, Head of the Department of Applied Microbiology. The plasmas – energetically charged gases – produce hydrogen peroxide as well as a variety of reactive species.

The researchers use the non-specific peroxigenase (AaeUPO) from the edible fungus Agrocybe aegerita as a model enzyme. They showed in initial studies that although it works for plasma-driven biocatalysis, there are some fundamental limitations. “The decisive factor was that the enzymes are sensitive to plasma treatment and are therefore inactivated within a short period of time,” Tim Dirks, lead author of the current study, explains. “To prevent this, we use the method of enzyme immobilization by attaching the enzymes to tiny beads with a porous surface.”

Tim DirksTim Dirks works at the Chair of Applied Microbiology at Ruhr University Bochum. Credit: © RUB, Marquard

Beads trap the enzymes at the bottom

Due to gravity, these beads lie on the bottom of the sample and the buffer solution above provides a protective zone between the plasma phase at the top and the enzymes. The research team observed at an early stage that the different immobilization methods also led to different survival rates of enzymes. The aim of the current study was therefore to investigate the effects of different immobilization methods on the plasma stability of enzymes using a larger set of enzymes.

Five different enzymes were selected; two of them also convert hydrogen peroxide and three of them don’t require hydrogen peroxide for activity. The researchers tested nine different types of beads, some of which had a resin surface and others a silica surface with or without a polymer coating. After immobilization, the enzymes were treated with plasma for up to five minutes. The researchers then compared their residual activity with untreated controls.

The path to new applications

The beads with resin surfaces showed the best results for all five enzymes. “The amino and epoxy-butyl beads performed best,” says Tim Dirks. In both cases, the enzymes form a strong, covalent bond with the carrier material, which can’t be dissociated. “This type of immobilization appears to limit the mobility of the enzymes, which makes them less susceptible to plasma-induced inactivation,” outlines Tim Dirks. By extending the plasma treatment for the most promising candidates to up to one hour, the team was able to increase the stability of the enzymes under plasma treatment by immobilization up to a factor of 44. “The findings of this study thus pave the way for new applications that aim to combine enzymes with technical plasmas in the future,” the researchers conclude.

Journal: Journal of The Royal Society Interface
DOI: 10.1098/rsif.2023.0299
Method of Research: Experimental study
Subject of Research: Not applicable
Article Title: Immobilization Protects Enzymes From Plasma-Mediated Inactivation
Article Publication Date: 25-Oct-2023

Media Contact

Meike Driessen
Ruhr-University Bochum
meike.driessen@uv.rub.de
Office: 49-234-32-26952

Expert Contact

Prof. Dr. Julia Bandow
Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Germany
julia.bandow@ruhr-uni-bochum.de
Office: + 49 234 32 23102
 @ruhrunibochum

Media Contact

Meike Driessen
Ruhr-University Bochum

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Future AR/VR controllers could be the palm of your hand

Carnegie Mellon University’s EgoTouch creates simple interfaces for virtual and augmented reality. The new generation of augmented and virtual reality controllers may not just fit in the palm of your…

‘Game changer’ in lithium extraction

Rice researchers develop novel electrochemical reactor. A team of Rice University researchers led by Lisa Biswal and Haotian Wang has developed an innovative electrochemical reactor to extract lithium from natural…

The blue-green sustainable proteins of seaweed

… may soon be on your plate. The protein in sea lettuce, a type of seaweed, is a promising complement to both meat and other current alternative protein sources. Seaweed…