“Tug of war” between cells

“Tug of war” between cells with missing “tight junction” connections: “winner” cells contract at the sides thanks to their cytoskeleton (in magenta) and bulge upwards, while the neighbouring “loser” cells are stretched out. As a consequence, collective cell motion is obstructed and the gaps cannot be closed effectively.
Credit: Dr Alexey Chizhik, University of Göttingen, Third Institute of Physics - Biophysics

When crucial connections are missing.

Research team led by University of Göttingen investigates the importance of “tight junctions” for cell movement.

The ability of cells to move together in harmony is crucial for numerous biological processes in our body, for example wound healing, or the healthy development of an organism. This movement is made possible by the connections between individual cells. These connections, in turn, are established by various protein molecules which transfer the necessary forces and information between neighbouring cells. A research team led by the University of Göttingen, and including researchers at the Max Planck Institute of Molecular Cell Biology and Genetics in Dresden, has shown that particularly close connections – known as “tight junctions” – play an important role in cell movement. In addition, they investigated the consequences of losing these connections. The results were published in the journal Advanced Science.

The researchers investigated the connections between the cells using a range of biophysical techniques. Employing video microscopy and automated analyses, they examined the properties of thousands of living cells in motion for over twenty hours. Their investigations included observing the size, shape, and mobility of the cells. Specific proteins were also stained to find out what happens at a molecular level when the “tight junction” connections are lost.

If these special connections are missing, neighbouring cells can no longer couple with each other as they usually would. The individual cells start to contract very strongly and a kind of “tug of war” develops between the cells. Lead author Professor Andreas Janshoff, University of Göttingen, says: “Some cells win and contract to tiny sizes, while other cells lose and get stretched apart. The loser cells even start dividing more in the process, creating more and more small winner cells.” The contracted cells hardly move at all, so that the whole tissue behaves as if it is frozen. If, on the other hand, these special connections between the cells are present, the cell layer remains very mobile, similar to liquid water. For example, in healthy tissue, wounds can heal efficiently in this way, while the epithelial cells simultaneously maintain their barrier function.

“We were surprised to find such a mechanism which creates an extremely unequal tug of war between cells that are essentially identical,” says first author Mark Skamrahl at the University of Göttingen. “The negative influence of this tug of war on cell movement is another new finding about how cell mechanics can critically determine biological functions.”

In previous research, only the mechanical role of a type of connection known as “adherens junctions” in collective cell movement was known. The importance of “tight junctions” is not only essential to the understanding of cell movement, it could also contribute to the understanding of cancer.

###

Original publication: Mark Skamrahl et al. Tight Junction ZO Proteins Maintain Tissue Fluidity, Ensuring Efficient Collective Cell Migration. Advanced Science 2021. Doi: 10.1002/advs.202100478

 Contact:

Mark Skamrahl
University of Göttingen
Institute of Physical Chemistry
Tammannstraße 6, 37077 Göttingen, Germany
Email: mskamra@uni-goettingen.de

Professor Andreas Janshoff
University of Göttingen
Institute of Physical Chemistry
Tammannstraße 6, 37077 Göttingen, Germany
Tel: +49 (0)551-39 23601
Email: ajansho@gwdg.de

Journal: Advanced Science
Method of Research: Experimental study
Subject of Research: Cells
Article Title: Tight Junction ZO Proteins Maintain Tissue Fluidity, Ensuring Efficient Collective Cell Migration
Article Publication Date: 12-Aug-2021

Media Contact

Melissa Sollich
University of Göttingen
melissa.sollich@uni-goettingen.de
Office: 49-551-392-6228

Media Contact

Melissa Sollich
University of Göttingen

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

First-of-its-kind study uses remote sensing to monitor plastic debris in rivers and lakes

Remote sensing creates a cost-effective solution to monitoring plastic pollution. A first-of-its-kind study from researchers at the University of Minnesota Twin Cities shows how remote sensing can help monitor and…

Laser-based artificial neuron mimics nerve cell functions at lightning speed

With a processing speed a billion times faster than nature, chip-based laser neuron could help advance AI tasks such as pattern recognition and sequence prediction. Researchers have developed a laser-based…

Optimising the processing of plastic waste

Just one look in the yellow bin reveals a colourful jumble of different types of plastic. However, the purer and more uniform plastic waste is, the easier it is to…