U-M researchers solve a molecular mystery in muscle

But in spite of widespread interest in these potent molecules, key details about how IGFs work on muscle cells have been lacking.

A research by a team led by University of Michigan molecular biologist Cunming Duan has cleared up a longstanding mystery about the workings of IGFs. The team's findings, scheduled to be published online this week in the Proceedings of the National Academy of Sciences, could lead to new treatments for muscle-wasting diseases and new ways of preventing the muscle loss that accompanies aging.

And because IGFs also are implicated in the growth and spread of malignant tumors, the new insights may have implications in cancer biology.

Like other peptide and protein hormones, IGFs work by binding to receptors on the cells they target. The binding then sets off a cascade of reactions that ultimately direct the cell to do something. You might think that a given hormone, binding to a particular receptor, would always elicit the same response from the cell, but that's not what happens in the case of IGF and myoblasts (immature cells that develop into muscle tissue).

During muscle formation, the binding of IGF to its receptor can prompt either of two very different responses in myoblasts, said Duan, a professor in the Department of Molecular, Cellular and Developmental Biology. Some of the cells are stimulated to divide, while others interpret the very same signal as an order to differentiate (become specialized).

“These are opposite and mutually exclusive cellular events—once a muscle cell divides, it can't differentiate, and once it differentiates, it can never divide again,” Duan said. How activation of the same receptor by the same hormone can elicit two such distinctly different responses has been one of the most puzzling questions about IGF, but Duan and colleagues have found the answer.

“The myoblasts' response is controlled by oxygen availability,” said Duan. When oxygen levels are normal, IGF promotes muscle cell differentiation; when oxygen levels are below normal, IGF promotes muscle cell division. Teasing out the molecular details, the researchers discovered that low oxygen activates an intermediary called the HIF-1 complex, which reprograms the cascade of steps that ultimately controls the cell's response.

The findings not only reveal how muscle cells respond to varying oxygen levels during normal development, but also have implications for human disease, Duan said. “For example, a major reason that muscle atrophy occurs as people get older is that the IGF signal gets weaker. If we can find a way to affect IGF signaling, we may be able to stop or reverse the loss.” Although manipulating the oxygen levels in living cells could be difficult, it may be possible to manipulate HIF-1 in ways that would mimic changing oxygen levels.

The work also could help scientists better understand the processes involved in cancer progression and spread. It's known that IGF can promote tumor cell division and survival and also that oxygen levels are often lower in tumor tissue than in normal tissue. Finding the link between IGF activity and oxygen levels may lead to new strategies for cancer treatment.

Duan's coauthors on the paper are former graduate student Hongxia Ren, now a postdoctoral fellow at Columbia University, and Domenico Accili, professor of medicine at Columbia .

The research was funded by the National Institutes of Health, the National Science Foundation and the University of Michigan.

Contact: Nancy Ross-Flanigan
Phone: (734) 647-1853

Media Contact

Nancy Ross-Flanigan EurekAlert!

More Information:

http://www.umich.edu

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Pinpointing hydrogen isotopes in titanium hydride nanofilms

Although it is the smallest and lightest atom, hydrogen can have a big impact by infiltrating other materials and affecting their properties, such as superconductivity and metal-insulator-transitions. Now, researchers from…

A new way of entangling light and sound

For a wide variety of emerging quantum technologies, such as secure quantum communications and quantum computing, quantum entanglement is a prerequisite. Scientists at the Max-Planck-Institute for the Science of Light…

Telescope for NASA’s Roman Mission complete, delivered to Goddard

NASA’s Nancy Grace Roman Space Telescope is one giant step closer to unlocking the mysteries of the universe. The mission has now received its final major delivery: the Optical Telescope…