U of Minnesota researcher discovers how electricity moves through cells

Researchers at the University of Minnesota have created a molecular image of a system that moves electrons between proteins in cells. The achievement is a breakthrough for biology and could provide insights to minimize energy loss in other systems, from nanoscale devices to moving electricity around the country.

The research, led by Carrie Wilmot, an associate professor in the College of Biological Sciences, is published in the March 12 issue of Science.

“Evolution has been fine-tuning electricity in organisms for a lot longer than humans have been using it,” Wilmot says. “We can learn a lot from nature about how to use it more efficiently. This new glimpse at how the body uses electricity could lead to nanotechnology to shrink electronic circuitry even further or a more efficient grid to provide power to homes and businesses.”

Energy generated by intracellular movement of electrons is the fundamental power source that enables humans to exist. As electrons move within cells, energy is channeled to create complex molecules, such as protein and DNA. These are the building materials that enable organisms to grow, maintain themselves, and store energy. Wilmot's images, obtained using x-ray crystallography, will advance the effort to understand this process better.

“Obtaining a crystal structure of a complex cellular electron transfer system is like being behind stage at a magic show,” says Vernon Anderson, who oversees biochemistry grants at the National Institutes of Health's National Institute of General Medical Sciences. “We have always known there was a trick, but now the Wilmot group has provided a unique view of how this extraordinary chemical feat is accomplished.”

Wilmot, an associate professor in the College of Biological Sciences, is known in the scientific community for pioneering a technique to freeze biological catalysts (enzymes) as they accelerate and orchestrate chemical reactions. This produces snapshots at different points during the reaction that can be viewed as frames in a movie that defines the molecular and structural changes that occur as the chemistry unfolds.

Faculty in the College of Biological Sciences conduct research in all areas of biology, from molecules to ecosystems, to advance knowledge and support applications in medicine, renewable energy, agriculture and biotechnology. For more information, go to http://www.cbs.umn.edu

Media Contact

Jeff Falk EurekAlert!

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Pinpointing hydrogen isotopes in titanium hydride nanofilms

Although it is the smallest and lightest atom, hydrogen can have a big impact by infiltrating other materials and affecting their properties, such as superconductivity and metal-insulator-transitions. Now, researchers from…

A new way of entangling light and sound

For a wide variety of emerging quantum technologies, such as secure quantum communications and quantum computing, quantum entanglement is a prerequisite. Scientists at the Max-Planck-Institute for the Science of Light…

Telescope for NASA’s Roman Mission complete, delivered to Goddard

NASA’s Nancy Grace Roman Space Telescope is one giant step closer to unlocking the mysteries of the universe. The mission has now received its final major delivery: the Optical Telescope…