UCSB researchers find a way to detect stealthy, 'hypervirulent' Salmonella strains

Salmonella typhimurium (red) invades cultured human cells in this color-enhanced scanning electron micrograph. Credit: Rocky Mountain Laboratories, NIAID, NIH<br>

Their findings, in a paper titled “Intraspecies Variation in the Emergence of Hyperinfectious Bacterial Strains in Nature,” have been published in the journal PLoS Pathogens.

Salmonella is the most common cause of infection, hospitalization, and death due to foodborne illness in the U.S. This burden may continue to worsen due to the emergence of new strains that would tax current health-control efforts. To address this problem, researchers sought out –– and found –– hypervirulent strains that present a potential risk to food safety and the livestock industry.

An international team of scientists –– which also included Robert Sinsheimer and William Shimp from UCSB; Yi Xie and Bart Weimer from UC Davis; and John House from University of Sydney, Australia –– conducted a global search for hypervirulent Salmonella strains. They were found among isolates derived from livestock, and rendered current vaccines obsolete.

Bacteria behave like a Trojan Horse, exposing their weapons only after initiating infection. “These strains exhibit this behavior in the extreme –– essentially having a '5th gear' they can switch to during infection,” said Heithoff, lead author of the paper.

Previous efforts to find hypervirulent strains were unsuccessful since bacteria behave much like their less-virulent cousins after environmental exposure. “The trick was to assess their virulence during infection –– before they switch back to a less-virulent state in the lab,” said Professor Mahan.

Now that researchers know what to look for, they are developing methods to rapidly detect and discriminate the more harmful strains from their less-virulent cousins. The strategy is aided by a special medium utilized by the researchers that forces the bacteria to reveal their weapons in the laboratory –– the first step in the design of therapeutics to combat them.

Humans usually get Salmonella food poisoning from eating contaminated beef, chicken, or eggs. However, animal waste can contaminate fields where fruits, nuts, and vegetables are grown, thus posing a particular health concern for vegetarians. The threat is exacerbated when these foods are not cooked. Salmonella control efforts are expensive –– recent estimates place this cost up to $14.6 billion annually in the U.S.

As hypervirulent strains pose a potential risk to human and animal health, mitigation efforts warrant researchers' careful attention. “Now that we have identified the problem –– and potential solutions –– we just need to get to work,” Heithoff said.

This research was launched with support from The G. Harold & Leila Y. Mathers Foundation, which then leveraged additional funding from the U.S. Department of Agriculture, National Institutes of Health, U.S. Army, and Santa Barbara Cottage Hospital Research Program.

To read the paper, visit: http://dx.plos.org/10.1371/journal.ppat.1002647

Media Contact

Sonia Fernandez EurekAlert!

More Information:

http://www.ucsb.edu

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

NASA: Mystery of life’s handedness deepens

The mystery of why life uses molecules with specific orientations has deepened with a NASA-funded discovery that RNA — a key molecule thought to have potentially held the instructions for…

What are the effects of historic lithium mining on water quality?

Study reveals low levels of common contaminants but high levels of other elements in waters associated with an abandoned lithium mine. Lithium ore and mining waste from a historic lithium…

Quantum-inspired design boosts efficiency of heat-to-electricity conversion

Rice engineers take unconventional route to improving thermophotovoltaic systems. Researchers at Rice University have found a new way to improve a key element of thermophotovoltaic (TPV) systems, which convert heat…