Uncovering how plants see blue light

Cryptochromes are light detecting molecules found in all kinds of living organisms. Understanding the structure of cryptochrome-2, which allows plants to react to blue light wavelengths, can bring new insights into how they work.
Credit: Nitzan Shabek

Plants can perceive and react to light across a wide spectrum. New research from Prof. Nitzan Shabek’s laboratory in the Department of Plant Biology, College of Biological Sciences shows how plants can respond to blue light in particular.

“Plants can see much better than we can,” Shabek said.

Plants don’t have dedicated light-detecting organs, like our eyes. They do have a variety of dedicated receptors that can sense almost every single wavelength. One such are the blue light photoreceptors called cryptochromes. When the cryptochrome detects an incoming photon, it reacts in a way that triggers a unique physiological response.

Cryptochromes probably appeared billions of years ago with the first living bacteria and they are very similar across bacteria, plants and animals. We have cryptochromes in our own eyes, where they are involved in maintaining our circadian clock. In plants, cryptochromes govern a variety of critical processes including seed germination, flowering time and entrainment of the circadian clock. However, the photochemistry, regulation, and light-induced structural changes remain unclear.

In a new study, published Jan. 4 in Nature Communications Biology, Shabek’s lab determined the crystal structure of part of the blue-light receptor, cryptochrome-2, in the model plant Arabidopsis thaliana. They found that the light-detecting part of the molecule changes its structure when it reacts with light particles, going from a single unit to a structure made of four units linked together, or tetramer.

Rearrangement leads to gene activation

“This rearrangement process, called photo-induced oligomerization, is also very intriguing because certain elements within the protein undergo changes when exposed to blue light. Our molecular structure suggests that these light-induced changes release transcriptional regulators that control expression of specific genes in plants,” Shabek said.

The researchers were able to work out the structure of cryptochrome-2 with the aid of the Advanced Light Source X-ray facility at the Lawrence Berkeley National Laboratory.

The Shabek lab broadly studies how plants sense their environment from the molecular to the organismal levels.

“This work is part of our long-term goals to understand sensing mechanisms in plants. We are interested in hormone perceptions as well as light signaling pathways,” Shabek said.

The team first solved the crystal structure of the blue light receptor two years ago, using X-ray crystallography and biochemical approaches. With recent advances in plant sciences and structural biology, they were able to update the model and reveal the missing piece of the puzzle.

###

Coauthors on the work are Malathy Palayam, Jagadeesan Ganapathy, Angelica Guercio, Lior Tal and Samuel Deck. The Advanced Light Source is a U.S. Department of Energy Office of Science User Facility.

Media Contact

Andy Fell
University of California - Davis

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Innovative 3D printed scaffolds offer new hope for bone healing

Researchers at the Institute for Bioengineering of Catalonia have developed novel 3D printed PLA-CaP scaffolds that promote blood vessel formation, ensuring better healing and regeneration of bone tissue. Bone is…

The surprising role of gut infection in Alzheimer’s disease

ASU- and Banner Alzheimer’s Institute-led study implicates link between a common virus and the disease, which travels from the gut to the brain and may be a target for antiviral…

Molecular gardening: New enzymes discovered for protein modification pruning

How deubiquitinases USP53 and USP54 cleave long polyubiquitin chains and how the former is linked to liver disease in children. Deubiquitinases (DUBs) are enzymes used by cells to trim protein…