Unlocking Worm Strategies
A Path to Innovative Vaccines and Therapies.
A research team led by Prof. Julia Esser-von Bieren from the Center of Allergy and Environment (ZAUM) at Helmholtz Munich and the Technical University of Munich, as well as the University of Lausanne (UNIL) has uncovered a molecular strategy employed by worm parasites (helminths) to evade host immune defenses. This discovery opens new avenues for the development of innovative vaccines and therapies. Published in Science Immunology, the study offers promising solutions for addressing major infectious diseases, allergies, and asthma by leveraging the unique immune-regulatory properties of helminths.
Decoding Immune Evasion by Worm Parasites
Helminths are known for their remarkable ability to regulate host immune responses, a trait that has intrigued scientists for its therapeutic potential. However, the mechanism behind this phenomenon have remained elusive. In their study, the researchers could identify how a specific parasite protein, helminth glutamate dehydrogenase (heGDH), modulates host immunity to protect the parasite while limiting inflammation and tissue damage.
The study shows that heGDH acts as a molecular switch in macrophages, critical innate immune cells. Once internalized by macrophages, the protein suppresses key functions necessary to trap and kill the parasite. Instead, it activates regulatory mechanisms that temper immune responses, preventing excessive inflammation. Remarkably, heGDH achieves this through an epigenetic mechanism, suggesting lasting impacts on immune regulation. By analyzing and modifying the protein’s structure, researchers pinpointed features essential to its unique activity, distinguishing it from its mammalian counterpart.
Implications for Vaccines and Therapeutics
These insights open the door to new medical applications. Glutamate dehydrogenases (GDHs), which are found across many worm parasites, have emerged as promising targets for vaccine development. At the same time, the research team is working on creating optimized variants of the protein that can evade detection by the human immune system.
“This study represents a major step toward leveraging the sophisticated immune evasion strategies of parasites for clinical benefit,” said Sina Bohnacker, the first author of the study. Julia Esser-von Bieren adds: “Our findings could lead to transformative treatments for infectious diseases and inflammatory conditions like asthma.”
Towards a Future of Broad-Acting Biotherapeutics
The discovery opens new avenues for addressing global health challenges. Anti-parasite vaccines could mitigate the burden of helminth infections, which affect an estimated 24% of the world’s population, according to the World Health Organization (WHO). Meanwhile, therapeutic variants of heGDH could provide a novel approach to managing chronic inflammatory diseases, offering new hope for conditions like asthma, allergies, and other immune-related disorders.
Wissenschaftliche Ansprechpartner:
Prof. Julia Esser-von Bieren, Center of Allergy and Environment (ZAUM) at Helmholtz Munich, Technical University of Munich, University of Lausanne (UNIL). Contact: julia.esser-vonbieren@unil.ch
Originalpublikation:
Bohnacker et al. (2024): A helminth enzyme subverts macrophage-mediated immunity by epigenetic targeting of prostaglandin synthesis. Science Immunology. DOI: 10.1126/sciimmunol.adl1467
Media Contact
All latest news from the category: Life Sciences and Chemistry
Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.
Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.
Newest articles
Recharging the Future: Batteries Built for Extreme Cold Using Negative Thermal Expansion
Most solids expand as temperatures increase and shrink as they cool. Some materials do the opposite, expanding in the cold. Lithium titanium phosphate is one such substance and could provide…
Self-Destructing Cancer Cells: Cutting-Edge RNA Breakthrough
Jülich scientists use novel RNA technology to selectively switch off tumours in the brain. An Adaptable Platform Technology That Destroys Glioblastoma Cancer Cells Using a special RNA molecule, a team…
Endurance Training: Transforming Lives of Heart Failure Patients
Can strength and endurance training be beneficial for patients with a certain form of heart failure? A research team from Greifswald investigated this question together with seven other research centers…