Wistar reports new class of antibiotics active against a wide range of bacteria

Bacteria image
Credit: The Wistar Institute

Dual-acting immuno-antibiotics block an essential pathway in bacteria and activate the adaptive immune response.

Wistar Institute scientists have discovered a new class of compounds that uniquely combine direct antibiotic killing of pan drug-resistant bacterial pathogens with a simultaneous rapid immune response for combatting antimicrobial resistance (AMR). These finding were published today in Nature.

The World Health Organization (WHO) has declared AMR as one of the top 10 global public health threats against humanity. It is estimated that by 2050, antibiotic-resistant infections could claim 10 million lives each year and impose a cumulative $100 trillion burden on the global economy. The list of bacteria that are becoming resistant to treatment with all available antibiotic options is growing and few new drugs are in the pipeline, creating a pressing need for new classes of antibiotics to prevent public health crises.

“We took a creative, double-pronged strategy to develop new molecules that can kill difficult-to-treat infections while enhancing the natural host immune response,” said Farokh Dotiwala, M.B.B.S., Ph.D., assistant professor in the Vaccine & Immunotherapy Center and lead author of the effort to identify a new generation of antimicrobials named dual-acting immuno-antibiotics (DAIAs).

Existing antibiotics target essential bacterial functions, including nucleic acid and protein synthesis, building of the cell membrane, and metabolic pathways. However, bacteria can acquire drug resistance by mutating the bacterial target the antibiotic is directed against, inactivating the drugs or pumping them out.

“We reasoned that harnessing the immune system to simultaneously attack bacteria on two different fronts makes it hard for them to develop resistance,” said Dotiwala.

He and colleagues focused on a metabolic pathway that is essential for most bacteria but absent in humans, making it an ideal target for antibiotic development. This pathway, called methyl-D-erythritol phosphate (MEP) or non-mevalonate pathway, is responsible for biosynthesis of isoprenoids — molecules required for cell survival in most pathogenic bacteria. The lab targeted the IspH enzyme, an essential enzyme in isoprenoid biosynthesis, as a way to block this pathway and kill the microbes. Given the broad presence of IspH in the bacterial world, this approach may target a wide range of bacteria.

Researchers used computer modeling to screen several million commercially available compounds for their ability to bind with the enzyme, and selected the most potent ones that inhibited IspH function as starting points for drug discovery.

Since previously available IspH inhibitors could not penetrate the bacterial cell wall, Dotiwala collaborated with Wistar’s medicinal chemist Joseph Salvino, Ph.D., professor in The Wistar Institute Cancer Center and a co-senior author on the study, to identify and synthesize novel IspH inhibitor molecules that were able to get inside the bacteria.

The team demonstrated that the IspH inhibitors stimulated the immune system with more potent bacterial killing activity and specificity than current best-in-class antibiotics when tested in vitro on clinical isolates of antibiotic-resistant bacteria, including a wide range of pathogenic gram negative and gram positive bacteria. In preclinical models of gram negative bacterial infection, the bactericidal effects of the IspH inhibitors outperformed traditional pan antibiotics. All compounds tested were shown to be nontoxic to human cells.

“Immune activation represents the second line of attack of the DAIA strategy,” said Kumar Singh, Ph.D., Dotiwala lab postdoctoral fellow and first author of the study.

“We believe this innovative DAIA strategy may represent a potential landmark in the world’s fight against AMR, creating a synergy between the direct killing ability of antibiotics and the natural power of the immune system,” echoed Dotiwala.

###

Co-authors: Rishabh Sharma, Poli Adi Narayana Reddy, Prashanthi Vonteddu, Madeline Good, Anjana Sundarrajan, Hyeree Choi, Kar Muthumani, Andrew Kossenkov, Aaron R. Goldman, Hsin-Yao Tang, Joel Cassel, Maureen E. Murphy, Rajasekharan Somasundaram, and Meenhard Herlyn from Wistar; and Maxim Totrov from Molsoft LLC.

Work supported by: The G. Harold and Leila Y. Mathers Foundation, funds from the Commonwealth Universal Research Enhancement (CURE) Program and the Wistar Science Discovery Fund; The Pew Charitable Trusts supported Farokh Dotiwala with a Wistar Institute recruitment grant; Additional support was provided by the Adelson Medical Research Foundation and the Department of Defense. Support for The Wistar Institute facilities was provided by Cancer Center Support Grant P30 CA010815 and National Institutes of Health instrument grant S10 OD023586.

Publication information: IspH inhibitors kill Gram-negative bacteria and mobilize immune clearance”, Nature (2020). Online publication.

The Wistar Institute is an international leader in biomedical research with special expertise in cancer research and vaccine development. Founded in 1892 as the first independent nonprofit biomedical research institute in the United States, Wistar has held the prestigious Cancer Center designation from the National Cancer Institute since 1972. The Institute works actively to ensure that research advances move from the laboratory to the clinic as quickly as possible. wistar.org.

Media Contact

Darien Sutton
dsutton@wistar.org
215-870-2048

 @TheWistar

http://www.wistar.org

Related Journal Article

http://dx.doi.org/10.1038/s41586-020-03074-x

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Illustration of RNA modifications contributing to fungal drug resistance

Tackling Life-Threatening Fungal Infections Using RNA Modifications

Importance of RNA modifications for the development of resistance in fungi raises hope for more effective treatment of fungal infections. An often-overlooked mechanism of gene regulation may be involved in…

Image illustrating tense encoding and verb retrieval challenges in aphasia across multiple languages.

Unraveling Aphasia: Global Study Breaks Down Patients’ Struggle with Verb Tenses

An international team of researchers, including scientists from the HSE Centre for Language and Brain, has identified the causes of impairments in expressing grammatical tense in people with aphasia. They discovered…

Extreme weather events and climate resilience in 2024.

Facing the Storm: A Prepped Up Future Against Extreme Climatic and Weather Changes

From the persistent droughts of southern Africa and Central America in the early part of the year to the more recent devastating extreme rainfall in Spain and the deadly Hurricane…