New invention regulates nerve cells electronically
The invention, which opens new avenues for controlling chemical signals, is being published in the coming issue of the highly ranked scientific journal PNAS. The authors are Klas Tybrandt and Magnus Berggren of Linköping University, who developed the invention, and Karin Larsson and Agneta Richter-Dahlfors at the Karolinska Institute, who have used it in experiments with cultivated nerve cells.
The four scientists work at the OBOE Research Center, which is dedicated to the study and regulation of processes in living cells and tissue through the use of organic electronics.
Previously use has been made of nano-canals and nano-pores to actively control the concentration and transport of ions. But such components are difficult to produce and moreover function poorly when the salt content is high, which is a precondition in interaction with biological systems.
“To get around these problems, we exploited the similarity between ion-selective membranes – plastics that only conduct ions of one charge – and doped semiconductors, such as silicon. It was previously known that it is possible to produce diodes from such membranes. We took it a step further by joining two ion diodes into a transistor,” says Klas Tybrandt, a doctoral candidate in organic electronics.
When an ion transistor was connected to cultivated nerve cells, it could be used to control the supply of the signal substance acetylcholin locally to the cells. The successful result demonstrates both that the component functions together with biological systems and that even tiny charged biomolecules can be transported without difficulty.
“Since the ion transistor is made of plastic, it can be integrated with other components we are developing. This means we can make use of inexpensive printing processes on flexible materials. We believe ion transistors will play a major role in various applications, such as the controlled delivery of drugs, lab-on-a-chip and sensors,” says Magnus Berggren, Önnesjö professor of organic electronics.
Article: Ion bipolar junction transistors by Klas Tybrandt, Karin C. Larsson, Agneta Richter-Dahlfors, and Magnus Berggren, PNAS Ahead of print May 17 2010.
Contact: Klas Tybrandt phone: +46 (0)11-363334, mobile: +46 (0)70-4997772, klaty@itn.liu.se and Magnus Berggren phone: +46 (0)11-363637, mobile: +46 (0)709-783430, magbe@itn.liu.se
Pressofficer Åke Hjelm; åka.hjelm@liu.se; +46-13281 395
Media Contact
All latest news from the category: Machine Engineering
Machine engineering is one of Germany’s key industries. The importance of this segment has led to the creation of new university degree programs in fields such as production and logistics, process engineering, vehicle/automotive engineering, production engineering and aerospace engineering among others.
innovations-report offers informative reports and articles covering technologies such as automation, motion, power train, energy, conveyor, plastics, lightweight construction, logistics/warehousing, measurement systems, machine tools and control engineering.
Newest articles
Innovative 3D printed scaffolds offer new hope for bone healing
Researchers at the Institute for Bioengineering of Catalonia have developed novel 3D printed PLA-CaP scaffolds that promote blood vessel formation, ensuring better healing and regeneration of bone tissue. Bone is…
The surprising role of gut infection in Alzheimer’s disease
ASU- and Banner Alzheimer’s Institute-led study implicates link between a common virus and the disease, which travels from the gut to the brain and may be a target for antiviral…
Molecular gardening: New enzymes discovered for protein modification pruning
How deubiquitinases USP53 and USP54 cleave long polyubiquitin chains and how the former is linked to liver disease in children. Deubiquitinases (DUBs) are enzymes used by cells to trim protein…