Primary investigation on ram-rotor detonation engine

Conceptual scheme of a supersonic vehicle using the ram-rotor detonation engine
Credit: Chinese Journal of Aeronautics

Detonation is a supersonic combustion wave, characterized by a shock wave driven by the energy release from closely coupled chemical reactions. It is a typical form of pressure gain combustion, converting chemical energy into thrust efficiently. The concept of harnessing detonation to improve thermodynamic cycle efficiency and enhance the performance of aerospace propulsion systems has been a subject of interest for many years. Since the 1950s, various types of detonation engines have been proposed, including pulse detonation engines, oblique detonation engines, and rotating detonation engines. However, these three types of detonation engines encounter challenges such as poor thrust continuity, high starting Mach numbers, and insufficient performance gains, which limit the widespread application of detonation propulsion technology.

In a recent article featured in the Chinese Journal of Aeronautics, Dr. Haocheng Wen and Prof. Bing Wang from Tsinghua University proposed a new concept for detonative propulsion, called the Ram-Rotor Detonation Engine, which is expected to break through the limitations of the above-mentioned detonation engines.

“The original intention of developing this new engine is to improve the structures of rotating detonation engines,” said Dr. Haocheng Wen, “this concept is also inspired by the ram-rotor compressor.” The ram-rotor detonation engine, abbreviated as RRDE, mainly consists of a rotating rotor with blades, and a stationary casing. The blades on the rotor are distributed in a helical symmetric manner. The combustible mixture undergoes compression, detonation combustion, and expansion within the variable cross-sectional channels between the blades.

The authors performed primary theoretical and numerical investigation on the RRDE. They established a theoretical model to analyze the relationship between the propulsion performance and parameters such as inlet velocity, rotor rim velocity, and equivalence ratio. It is indicated that for the stoichiometric hydrogen/air mixture, the total pressure gain of RRDE can exceed 3. Furthermore, they also conducted numerical simulations on the typical structure of RRDE and obtained the characteristic flow field and propulsion performance of engine. Their simulation results demonstrate that the detonation wave can stabilize and remain stationary within the blades by the given configuration, and can adapt to the variations in parameters such as the equivalence ratio within a certain range. “Our study primarily verifies the performance benefits and operation feasibility of the RRDE.” said Dr. Haocheng Wen.

The authors believe that the RRDE has several advantages, including a simple and compact structure, high efficiency, and the adaptability to a wide-range of flight Mach number. However, they also candidly acknowledge that the realization of the RRDE is confronted with numerous challenges that demand resolution, such as the stabilization mechanism of detonation wave, supersonic boundary layer interference, implementation of high-speed rotor, as well as thermal protection, etc. “Our team is conducting ongoing research on key scientific and engineering issues in RRDE.” said Prof. Bing Wang. They expect the RRDE can provide high-performance propulsion for the supersonic vehicles in the future.

About Chinese Journal of Aeronautics 

Chinese Journal of Aeronautics (CJA) is an open access, peer-reviewed international journal covering all aspects of aerospace engineering, monthly published by Elsevier. The Journal reports the scientific and technological achievements and frontiers in aeronautic engineering and astronautic engineering, in both theory and practice. CJA is indexed in SCI (IF = 5.3, top 4/52, Q1), EI, IAA, AJ, CSA, Scopus.

Original Source

Haocheng Wen, Bing Wang. Primary investigation on Ram-Rotor Detonation Engine [J]. Chinese Journal of Aeronautics, 2024, 37(11):66-80, https://doi.org/10.1016/j.cja.2024.05.016.

Journal: Chinese Journal of Aeronautics
DOI: 10.1016/j.cja.2024.05.016
Article Title: Primary investigation on Ram-Rotor Detonation Engine
Article Publication Date: 6-Nov-2024

Media Contact

Yating Xu
Editorial office of Chinese Journal of Aeronautics
hkxbmedia@buaa.edu.cn
Office: 010-82317061

www.buaa.edu.cn

Expert Contacts

Haocheng Wen
Tsinghua University
haochengwenson@126.com

Bing Wang
Tsinghua University
wbing@tsinghua.edu.cn

www.tsinghua.edu.cn

Media Contact

Yating Xu
Editorial office of Chinese Journal of Aeronautics

All latest news from the category: Machine Engineering

Machine engineering is one of Germany’s key industries. The importance of this segment has led to the creation of new university degree programs in fields such as production and logistics, process engineering, vehicle/automotive engineering, production engineering and aerospace engineering among others.

innovations-report offers informative reports and articles covering technologies such as automation, motion, power train, energy, conveyor, plastics, lightweight construction, logistics/warehousing, measurement systems, machine tools and control engineering.

Back to home

Comments (0)

Write a comment

Newest articles

High-performance cerium oxide-based thermal switch for efficient heat flow control and sustainable energy systems.

Durable, Efficient, Sustainable: The Rise of Cerium Oxide Thermal Switches

Groundbreaking cerium oxide-based thermal switches achieve remarkable performance, transforming heat flow control with sustainable and efficient technology. Cerium Oxide-Based Thermal Switches Revolutionize Heat Flow Control Thermal switches, which electrically control…

Industrial robots lowering CO2 emissions in manufacturing for sustainable global trade.

How Industrial Robots are Reducing Emissions in Global Manufacturing

A new study explores the intersection of industrial automation and environmental sustainability, focusing on the role of industrial robots in reducing the carbon intensity of manufacturing exports. The research demonstrates…

3D-printed bioceramic grafts for craniomaxillofacial bone regeneration, showcasing precision medicine and patient-specific solutions.

Patients Can Heal Through Precise, Personalized Bioceramic Grafts

A recent review is transforming the landscape of craniomaxillofacial bone regeneration with the introduction of personalized bioceramic grafts. This pioneering research explores the fabrication and clinical potential of synthetic grafts…