From prototypes to entering new markets – LASHARE lends a helping hand to European manufacturing
This is an area where laser-based manufacturing processes have long led the way. Yet making these developments usable in industry, and opening up new markets, calls for a precise definition of the technical requirements, as well as in-depth knowledge of the market, combined with networking between users, suppliers and research institutes.
Now the LASHARE project, co-funded by the EU, has been launched to give more than 30 SMEs a helping hand, bringing together six of the most renowned European research institutes under the leadership of the Fraunhofer Institute for Laser Technology ILT. The ambitious aim of the project is to enhance the competitiveness of the European laser industry by accelerating technology transfer.
Often, new laser-based manufacturing techniques employ specific, standalone solutions that have previously only been demonstrated in a laboratory setting. In many cases these innovations are developed by small and medium-sized enterprises (SMEs), which possess the flexibility required to find a speedy solution to the problem at hand. However there are many possible pitfalls in getting from a lab-demonstrated solution to industrially robust manufacturing equipment. It may be, for instance, that parts of the solution were developed at a time when the final specifications were still unknown or that the components are not sufficiently robust for everyday use. As an SME’s business success relies heavily on a quick market launch, and securing user acceptance for its new technologies and products, LASHARE will help minimize the risks involved in this process and strengthen Europe as a leading manufacturing location, by helping innovative manufacturing technologies get to market more quickly.
Catalysts for technology transfer
On September 25-27, 2013 Fraunhofer ILT hosted the launch event of the EU co-funded LASHARE project, which will run for four years with a budget of almost 15 million euros. Held in Aachen, the event brought together 38 partners from industry and research to determine relevant targets, metrics and procedures for the “LASHARE Assessment Framework”. This framework provides the basis to accelerate the development of demonstrated laser-based equipment and help prepare it for manufacturing. The technologies under assessment are compared with the levels of maturity seen in other established technologies in their sector, helping to accelerate the process toward a demand driven, industrially robust solution.
Rapid market launch for a variety of laser applications
LASHARE helps small and medium-sized partners, in the role of suppliers, to develop the laser-based equipment with a view to improving new manufacturing processes and making sure they respond to current user needs regarding technical implementation. To accomplish this LASHARE has launched fourteen “Laser-based Equipment Assessments” (LEAs) for a diverse array of laser applications ranging from large-scale technologies such as the welding of ship components to nanotechnologies such as the structuring of surfaces using ultrashort pulse lasers.
First, users define the industrial requirements for the laser-based equipment, which they will later evaluate in an industrial-scale manufacturing setting at the end of the LEA. Research partners, working with the users and suppliers, will establish the “LASHARE Assessment Framework” which will define the best technical solution for the requirements provided. Finally, suppliers will use the results from the “LASHARE Assessment Framework”, and implement robust laser-based solutions that meet end-user requirements. In this way, LEAs speed up the t transfer of laboratory solutions to real manufacturing applications that can establish themselves on the market quickly and reliably – the key to market success.
Fourteen LEAs are running from the beginning of the project and will be joined by eight to twelve others during the project through a competitive call. LASHARE focuses on SMEs and enables them to bring new products to market to the benefit of European industry. All in all, more than 30 SME partners will benefit from the support of the FP7-FoF (Factories of the Future) program.
Contacts
M.Sc. Dipl.-Ing. (FH) B.Eng. (hon) Ulrich Thombansen
Process Control and System Technology Group
Phone +49 241 8906-320
ulrich.thombansen@ilt.fraunhofer.de
Dr. Arnold Gillner
Head of the competence area Laser Material Processing
Phone +49 241 8906-148
arnold.gillner@ilt.fraunhofer.de
Media Contact
All latest news from the category: Machine Engineering
Machine engineering is one of Germany’s key industries. The importance of this segment has led to the creation of new university degree programs in fields such as production and logistics, process engineering, vehicle/automotive engineering, production engineering and aerospace engineering among others.
innovations-report offers informative reports and articles covering technologies such as automation, motion, power train, energy, conveyor, plastics, lightweight construction, logistics/warehousing, measurement systems, machine tools and control engineering.
Newest articles
NASA: Mystery of life’s handedness deepens
The mystery of why life uses molecules with specific orientations has deepened with a NASA-funded discovery that RNA — a key molecule thought to have potentially held the instructions for…
What are the effects of historic lithium mining on water quality?
Study reveals low levels of common contaminants but high levels of other elements in waters associated with an abandoned lithium mine. Lithium ore and mining waste from a historic lithium…
Quantum-inspired design boosts efficiency of heat-to-electricity conversion
Rice engineers take unconventional route to improving thermophotovoltaic systems. Researchers at Rice University have found a new way to improve a key element of thermophotovoltaic (TPV) systems, which convert heat…