A pathway towards new quantum devices
Electrically defined quantum dots in zinc oxide.
Researchers have successfully created electrically defined quantum dots in zinc oxide (ZnO) heterostructures, marking a significant milestone in the development of quantum technologies.
Details of their breakthrough were published in the journal Nature Communications on November 7, 2024.
Quantum dots, tiny semiconductor structures that can trap electrons in nanometer-scale spaces, have long been studied for their potential to serve as qubits in quantum computing. These dots are crucial for quantum computing because they allow scientists to control the behavior of electrons, similar to how a conductor might control a current of water flowing through pipes.
Until now, most research has focused on materials such as gallium arsenide (GaAs) and silicon. However, zinc oxide, a material known for its strong electron correlation and excellent spin quantum coherence, had not yet been explored for use in electrically defined quantum dots, i.e., those created and controlled using electrical methods.
In this study, the research team was able to manipulate the internal states of quantum dots in zinc oxide using precise voltage control – like adjusting the dials on a radio to fine-tune a signal. This innovation allowed them to observe the Coulomb diamond, a key characteristic of quantum dots, providing insights into the behavior of electrons trapped inside.
“The Coulomb diamond is like a fingerprint that helps identify the unique ‘personality’ of each quantum dot,” points out Tomohiro Otsuka, an associate professor at Tohoku University and corresponding author of the paper. “By using zinc oxide, we’re opening up new frontiers developing efficient and stable qubits, a cornerstone for quantum computing.”
One of the most remarkable findings of this study was the discovery of the Kondo effect in zinc oxide quantum dots. The Kondo effect, a quantum phenomenon where electron interactions create conduction, typically depends on the number of electrons in the quantum dot. However, in zinc oxide, the researchers observed this effect even when the number of electrons did not fit the usual pattern. This new behavior, linked to the material’s strong electron correlation, adds another layer of complexity and potential to zinc oxide-based quantum devices.
“The Kondo effect we observed is different from what we typically see in other semiconductors like GaAs,” adds Otsuka. “This difference could help us better understand electron behavior in this new material and improve our ability to control and manipulate qubits.”
Looking ahead, the team is focused on harnessing these new findings to develop practical quantum devices.
Journal: Nature Communications
DOI: 10.1038/s41467-024-53890-2
Article Title: Parity-independent Kondo effect of correlated electrons in electrostatically defined ZnO quantum dots
Article Publication Date: 7-Nov-2024
Media Contact
Public Relations
Tohoku University
public_relations@grp.tohoku.ac.jp
All latest news from the category: Materials Sciences
Materials management deals with the research, development, manufacturing and processing of raw and industrial materials. Key aspects here are biological and medical issues, which play an increasingly important role in this field.
innovations-report offers in-depth articles related to the development and application of materials and the structure and properties of new materials.
Newest articles
Largest magnetic anisotropy of a molecule measured at BESSY II
At the Berlin synchrotron radiation source BESSY II, the largest magnetic anisotropy of a single molecule ever measured experimentally has been determined. The larger this anisotropy is, the better a…
Breaking boundaries: Researchers isolate quantum coherence in classical light systems
LSU quantum researchers uncover hidden quantum behaviors within classical light, which could make quantum technologies robust. Understanding the boundary between classical and quantum physics has long been a central question…
MRI-first strategy for prostate cancer detection proves to be safe
Active monitoring is a sufficiently safe option when prostate MRI findings are negative. There are several strategies for the early detection of prostate cancer. The first step is often a…