A tiny spot leads to a large advancement in nano-processing
Focusing a tailored laser beam through transparent glass can create a tiny spot inside the material. Researchers at Tohoku University have reported on a way to use this small spot to improve laser material processing, boosting processing resolution.
Their findings were published in the journal Optics Letters on March 1,2024.
Laser machining, like drilling and cutting, is vital in industries such as automotive, semiconductors, and medicine. Ultra-short pulse laser sources, with pulse widths from picoseconds to femtoseconds, enable precise processing at scales ranging from microns to tens of microns. But recent advancements demand even smaller scales, below 100 nanometers, which existing methods struggle to achieve.
The researchers focused on a laser beam with radial polarization, known as a vector beam. This beam generates a longitudinal electric field at the focus, producing a smaller spot than conventional beams.
Scientists have identified this process as promising for laser processing. However, one drawback is that this field weakens inside the material due to light refraction at the air-material interface, limiting its use.
“We overcame this employing an oil immersion objective lens – something commonly found in biological microscopes – for laser processing glass substrates,” exclaims Yuichi Kozawa, an associate professor at Tohoku University’s Institute for Multidisciplinary Research for Advanced Materials (IMRAM) and co-author of the paper. “Because the immersion oil and glass have nearly identical refractive indices, the light that passes through them does not bend.”
Further examination of the radially polarized beam behavior when focused with an annular shape revealed that the longitudinal field is greatly enhanced. This enhancement occurs because of total reflection at high converging angles on the back surface between the glass and air. By using an annular-shaped radially polarized beam, Kozawa and his colleagues created a small focal spot.
From there, they applied this method to laser process a glass surface with an ultra-short pulse laser beam. A single shot of the converted pulse on the back surface of a glass substrate created a hole with a diameter of 67 nanometers, about 1/16 of the laser beam’s wavelength.
“This breakthrough enables direct material processing with enhanced precision using the enhanced longitudinal electric field,” adds Kozawa. “It offers a simple approach to realize processing scales below 100 nm and opens new possibilities for laser nano-processing in various industries and scientific fields.”
Journal: Optics Letters
DOI: 10.1364/OL.517382
Article Title: Laser nanoprocessing via an enhanced longitudinal electric field of a radially polarized beam
Article Publication Date: 1-Mar-2024
Media Contact
Public Relations
Tohoku University
public_relations@grp.tohoku.ac.jp
All latest news from the category: Materials Sciences
Materials management deals with the research, development, manufacturing and processing of raw and industrial materials. Key aspects here are biological and medical issues, which play an increasingly important role in this field.
innovations-report offers in-depth articles related to the development and application of materials and the structure and properties of new materials.
Newest articles
You are What You Eat—Stanford Study Links Fiber to Anti-Cancer Gene Modulation
The Fiber Gap: A Growing Concern in American Diets Fiber is well known to be an important part of a healthy diet, yet less than 10% of Americans eat the minimum recommended…
Trust Your Gut—RNA-Protein Discovery for Better Immunity
HIRI researchers uncover control mechanisms of polysaccharide utilization in Bacteroides thetaiotaomicron. Researchers at the Helmholtz Institute for RNA-based Infection Research (HIRI) and the Julius-Maximilians-Universität (JMU) in Würzburg have identified a…
ASXL1 Mutation: The Hidden Trigger Behind Blood Cancers and Inflammation
Scientists show how a mutated gene harms red and white blood cells. LA JOLLA, CA—Scientists at La Jolla Institute for Immunology (LJI) have discovered how a mutated gene kicks off…