Art meets Science: Prototyping Lab for textile electronics
Anyone who thinks of research laboratories only in terms of protective suits and clean rooms is not quite right: Since April, patterns, seams and mannequins have not been uncommon in the new Textile Prototyping Lab (TPL) at Fraunhofer IZM in Berlin. With the TPL, there is now a place where creative high-tech textiles are produced and which already distinguishes itself from the style of usual research laboratories by its design. As a collaborative project with the Weißensee Kunsthochschule Berlin, textile-integrated electronics are created here for a wide range of applications from architecture to medicine.
Since its opening, the lab has been available to designers and product developers to prototype individual visions in the field of e-textiles. The possibilities are virtually unlimited: From interfaces between textiles and electronics to the testing of process chains, parts of the laboratory or even the entire laboratory can be used freely. In addition to the pure development and construction work, the premises can be converted in a few moves and repurposed for workshops or exhibitions.
Malte von Krshiwoblozki, who is providing scientific support for the project at Fraunhofer IZM, cited other advantages: “Not only the modular workstations and the meeting area are attractive for joint project work, especially the machinery offers a wide range for interested parties. The ‘sewing and embroidery’ work area, for example, is equipped with several sewing machines as well as a computer-controlled embroidery machine. It thus becomes central to the TPL, as textile finishing with small-format machines is the focus of this lab’s work.” Another work area covers “Cutting & Separating” with a laser cutter and a cutting plotter. In addition, there are several presses and laminators, a soldering station and a 3D printer.
In the TPL, beginners can also try their hand at e-textiles and expand their knowledge: The prototyping kit developed at Fraunhofer IZM, which includes a series of electronic modules, LEDs and sensors that can be embroidered by hand as well as by machine, is particularly helpful in this regard.
“For particularly durable electronic textiles, the textile bonder developed and built by Fraunhofer IZM researchers can also be used in cooperative projects of the Textile Prototyping Lab. The versatile modules of the prototyping kit are deliberately designed so that integration into the textile can take place not only with classic textile technology such as embroidery during the prototyping phase, but also for subsequent, more industrial implementations using the textile bonder. In keeping with the motto ‘sharing is caring’ and the principle of interdisciplinarity, we at Fraunhofer IZM are available to provide advice and support during the realization of the textile projects, so that the artists’ ideas can be enriched using such new technology,” said Malte von Krshiwoblozki.
Even before the opening of the laboratory, the collaboration between the Weißensee Kunsthochschule Berlin and Fraunhofer IZM had already produced developments that combine art and research in revolutionary ways. For example, a light rail for lamps that is made of a soft and conductive textile belt was created in cooperation with the designer Stefan Diez. For the Hans Riegel Foundation’s Touch Tomorrow educational project, an interactive jacket was developed that can control the color of integrated LEDs via arm movements. The team of the Textile Prototyping Lab is looking forward to upcoming, exciting and agile projects and is open for ideas from start-ups, SMEs as well as industry partners.
Wissenschaftliche Ansprechpartner:
Fraunhofer IZM: malte.von.krshiwoblozki@izm.fraunhofer.de, sigrid.rotzler@izm.fraunhofer.de
KHB: e.glomb@kh-berlin.de
Originalpublikation:
https://www.izm.fraunhofer.de/en/news_events/tech_news/art-meets-science-prototy…
Media Contact
All latest news from the category: Materials Sciences
Materials management deals with the research, development, manufacturing and processing of raw and industrial materials. Key aspects here are biological and medical issues, which play an increasingly important role in this field.
innovations-report offers in-depth articles related to the development and application of materials and the structure and properties of new materials.
Newest articles
Innovative 3D printed scaffolds offer new hope for bone healing
Researchers at the Institute for Bioengineering of Catalonia have developed novel 3D printed PLA-CaP scaffolds that promote blood vessel formation, ensuring better healing and regeneration of bone tissue. Bone is…
The surprising role of gut infection in Alzheimer’s disease
ASU- and Banner Alzheimer’s Institute-led study implicates link between a common virus and the disease, which travels from the gut to the brain and may be a target for antiviral…
Molecular gardening: New enzymes discovered for protein modification pruning
How deubiquitinases USP53 and USP54 cleave long polyubiquitin chains and how the former is linked to liver disease in children. Deubiquitinases (DUBs) are enzymes used by cells to trim protein…