Bake, melt or ignite

New research from University of British Columbia material scientists shows how synthesis methods have a profound impact on disordered materials.
Credit: University of British Columbia

How synthesis methods have a profound impact on disordered materials.

A new study reveals how different synthesis methods can profoundly impact the structure and function of high entropy oxides, a class of materials with applications in everyday electronic devices.

A new study has revealed for the first time how different synthesis methods can profoundly impact the structural and functional properties of high entropy oxides, a class of materials with applications in everyday electronic devices. The study was published this week in the Journal of the American Chemical Society.

“The specific material that we’ve studied here is a high entropy oxide with a spinel crystal structure, which is a mixture of five different transition metal oxides. A lot of the excitement that we see around this class of materials is in terms of their electrochemical properties,” said Dr. Alannah Hallas, a materials scientist with the University of British Columbia’s Blusson Quantum Matter Institute and Department of Physics and Astronomy.

“The reason these high entropy systems are so promising from that point of view is because they have  enormous chemical flexibility. While synthesizing these materials, we have many different knobs that we can turn, so there is kind of a limitless possibility in the ways we can construct them.”

The researchers prepared the identical samples using five different synthesis methods: solid state, high pressure, hydrothermal, molten salt, and combustion syntheses. The methods involve different ways of heating the material, different speeds at which the material is cooled back down to room temperature, and different chemical conditions under which the heating can occur.

“Our results confirm that the synthesis method matters a great deal. We found that while the average structure is unaltered, the samples vary significantly in their local structures and their microstructures with the combustion synthesis resulting in the most homogeneous samples.”

The key difference between the synthesis methods is the driving mechanism that forms the material, said the lead author of the study Mario Ulises González-Rivas, who has mastered the art of preparing the samples using the different synthesis methods during his time as a PhD researcher in Hallas’s group.

In the solid-state method, metal oxides are mixed and then heated, similar to baking a cake. The high-pressure method adds external pressure during heating, which can influence how the material forms. The hydrothermal method mimics mineral formation in Earth’s core by heating metal salts in water inside a pressurized vessel, creating a flow that helps crystals grow. The molten salt method uses melted metal salts, which form a thick liquid that, as it cools, allows crystals to precipitate. Lastly, the combustion method involves dissolving metal salts in water, forming a gel that ignites, rapidly producing the desired material through a quick combustion reaction.

“Some of these materials have great potential for use in addressing energy challenges. The technological implementation of these materials for energy systems is deeply affected by the kind of structural variations that we observe in this study,” González-Rivas said. “Our results effectively provide a new optimization axis to be considered when implementing these materials in an applied setting.”

The study is the result of a collaboration between Hallas’ team at UBC Blusson QMI, Dr. Robert Green, a UBC Blusson QMI Affiliate Investigator from the University of Saskatchewan, and Dr. Hidenori Takagi from the Max Planck Institute for Solid State Research.

Journal: Journal of the American Chemical Society
DOI: 10.1021/jacs.4c05951
Method of Research: Experimental study
Subject of Research: Not applicable
Article Title: Impact of Synthesis Method on the Structure and Function of High Entropy Oxides
Article Publication Date: 10-Sep-2024

Media Contact

Shahrzad Abbasi
Stewart Blusson Quantum Matter Institute, University of British Columbia
shahrzad.abbasi@ubc.ca
Office: 604 360 6761
Cell: 604 360 6761

Media Contact

Shahrzad Abbasi
Stewart Blusson Quantum Matter Institute, University of British Columbia

All latest news from the category: Materials Sciences

Materials management deals with the research, development, manufacturing and processing of raw and industrial materials. Key aspects here are biological and medical issues, which play an increasingly important role in this field.

innovations-report offers in-depth articles related to the development and application of materials and the structure and properties of new materials.

Back to home

Comments (0)

Write a comment

Newest articles

New battery technology could boost renewable energy storage

Columbia Engineers develop new powerful battery “fuel” — an electrolyte that not only lasts longer but is also cheaper to produce. Renewable energy sources like wind and solar are critical…

New treatment extends ovarian function in older mice

Going beyond fertility, treatment also fixes hormone production and overall health. Medication to reduce ovarian scarring helps extends overall health of reproductive system Freezing eggs only addresses age-related infertility, not…

Swallowing triggers a feeling of elation

Researchers at the University of Bonn and the University of Cambridge have identified an important control circuit involved in the eating process. The study has revealed that fly larvae have…

Partners & Sponsors