Bendable energy storage materials by cool science

Synergistic Effect of Thermal Activation and Plasma
Credit: POSTECH

Imaging being able to wear your smartphone on your wrist, not as a watch, but literally as a flexible band that surrounds around your arm. How about clothes that charge your gadgets just by wearing them? Recently, a collaborative team led by Professor Jin Kon Kim and Dr. Keon-Woo Kim of Pohang University of Science and Technology (POSTECH), Professor Taesung Kim and M.S./Ph.D. student Hyunho Seok of Sungkyunkwan University (SKKU), and Professor Hong Chul Moon of University of Seoul (UOS) has brought a step closer to making this realty. This research work was published in Advanced Materials.

Mesoporous metal oxides (MMOs) are characterized by pores ranging from 2 to 50 nanometers (nm) in size. Due to their extensive surface area, MMOs have various applications, such as high-performance energy storage and efficient catalysis, semiconductors, and sensors. However, the integration of MMOs on wearable and flexible devices remains a great challenge, because plastic substrates could not maintain their integrity at elevated temperatures (350°C or above) where MMOs could be synthesized.

The research team tackled this problem by using synergetic effect of heat and plasma to synthesize various MMOs including vanadium oxide (V2O5), renowned high-performance energy storage materials, V6O13, TiO2, Nb2O5, and WO3, on flexible materials at much lower temperatures (150 ~ 200 oC). The high reactive plasma chemical moieties provide enough energy that could be compensated by high temperature. The fabricated devices could be bent thousands of times without losing the energy storage performance.

Professor Jin Kon Kim, the leading researcher, expressed his opinion, stating: “We’re on the brink of a revolution in wearable tech”. “Our breakthrough could lead to gadgets that are not only more flexible but also much more adaptable to our daily needs”

This research was supported by National Creative Initiative Research Program, the Basic Research in Science & Engineering Program, and the Nano & Material Technology Development Program.

Journal: Advanced Materials
DOI: 10.1002/adma.202311809
Article Title: Low-Temperature, Universal Synthetic Route for Mesoporous Metal Oxides by Exploiting Synergistic Effect of Thermal Activation and Plasma
Article Publication Date: 19-Jan-2024

Media Contact

Jinyoung Huh
Pohang University of Science & Technology (POSTECH)
jyhuh@postech.ac.kr
Office: 82-54-279-2415

Media Contact

Jinyoung Huh
Pohang University of Science & Technology (POSTECH)

All latest news from the category: Materials Sciences

Materials management deals with the research, development, manufacturing and processing of raw and industrial materials. Key aspects here are biological and medical issues, which play an increasingly important role in this field.

innovations-report offers in-depth articles related to the development and application of materials and the structure and properties of new materials.

Back to home

Comments (0)

Write a comment

Newest articles

Largest magnetic anisotropy of a molecule measured at BESSY II

At the Berlin synchrotron radiation source BESSY II, the largest magnetic anisotropy of a single molecule ever measured experimentally has been determined. The larger this anisotropy is, the better a…

Breaking boundaries: Researchers isolate quantum coherence in classical light systems

LSU quantum researchers uncover hidden quantum behaviors within classical light, which could make quantum technologies robust. Understanding the boundary between classical and quantum physics has long been a central question…

MRI-first strategy for prostate cancer detection proves to be safe

Active monitoring is a sufficiently safe option when prostate MRI findings are negative. There are several strategies for the early detection of prostate cancer. The first step is often a…