New catalyst could improve production of glass alternatives

University of Oregon chemists have identified a catalyst that could dramatically reduce the amount of waste made in the production of methyl methacrylate, a monomer used in the large-scale manufacturing of lightweight, shatter-resistant alternatives to glass such as Plexiglas.

David Tyler, Charles J. and M. Monteith Jacobs Professor of Chemistry, presented his findings Tuesday, Aug. 21, at the national meeting of the American Chemical Society in Philadelphia.

Global production of methyl methacrylate was 4 million metric tons in 2010. Each kilogram produced also yields 2.5 kilograms of ammonium hydrogen sulfate, a corrosive byproduct that is not usable. Disposal of ammonium hydrogen sulfate is extremely energy intensive, consuming 2 percent of the energy used in Texas annually.

Tyler's team has identified a catalyst that doesn't produce ammonium hydrogen sulfate.

“There were some really fundamental chemical reasons why previous catalysts didn't work with this process,” Tyler said. “We've found a catalyst that overcomes all of those objections.”

With the identification of a working catalyst, Tyler will focus his research on how to accelerate the conversion to methyl methacrylate. The industrial standard for a practical catalyst is conversion of acetone cyanohydrin into methyl methacrylate in the span of a minute or two, Tyler said.

About the University of Oregon

The University of Oregon is among the 108 institutions chosen from 4,633 U.S. universities for top-tier designation of “Very High Research Activity” in the 2010 Carnegie Classification of Institutions of Higher Education. The UO also is one of two Pacific Northwest members of the Association of American Universities.

SOURCE: David Tyler, UO chemistry professor, 541-346-4649, dtyler@uoregon.edu

Media Contact

Matt Cooper EurekAlert!

More Information:

http://www.uoregon.edu

All latest news from the category: Materials Sciences

Materials management deals with the research, development, manufacturing and processing of raw and industrial materials. Key aspects here are biological and medical issues, which play an increasingly important role in this field.

innovations-report offers in-depth articles related to the development and application of materials and the structure and properties of new materials.

Back to home

Comments (0)

Write a comment

Newest articles

Pinpointing hydrogen isotopes in titanium hydride nanofilms

Although it is the smallest and lightest atom, hydrogen can have a big impact by infiltrating other materials and affecting their properties, such as superconductivity and metal-insulator-transitions. Now, researchers from…

A new way of entangling light and sound

For a wide variety of emerging quantum technologies, such as secure quantum communications and quantum computing, quantum entanglement is a prerequisite. Scientists at the Max-Planck-Institute for the Science of Light…

Telescope for NASA’s Roman Mission complete, delivered to Goddard

NASA’s Nancy Grace Roman Space Telescope is one giant step closer to unlocking the mysteries of the universe. The mission has now received its final major delivery: the Optical Telescope…