Controlling magnetization by surface acoustic waves
Using the circular vibration of surface acoustic waves, a collaborative research group have successfully controlled the magnetization of a ferromagnetic thin film.
Their research was published in the journal Nature Communications on May 10, 2021.
Essentially, acoustic waves are waves of atomic vibrations in a substance. When the waves propagate across the surface of a material, the vibration becomes circular. This circular motion, known as angular momentum, can help measure rotational motion.
Surface acoustic waves are utilized in bandpass filters in cell phones. The bandpass allows certain frequencies in and keeps unneeded frequencies out. However, storage devices in computers are composed of ferromagnets.
“We wondered whether the surface acoustic waves could control another form of angular momentum: an electron’s spin – the source of magnetism,” said, coauthor of the study Ryo Sasaki, a graduate student at the University of Tokyo and concurrently a special research student at Tohoku University.
Sasaki worked alongside Yoichi Nii and Yoshinori Ononse, assistant and full professor at Tohoku University’s Institute of Materials Research.
Together, they were able to control the magnetization of a ferromagnetic thin film using the angular momentum transfer from surface acoustic wave to ferromagnetic spin moments.
Our discovery opens up new avenues for combining and developing acoustic and magnetic devices,” added Sasaki.
All latest news from the category: Materials Sciences
Materials management deals with the research, development, manufacturing and processing of raw and industrial materials. Key aspects here are biological and medical issues, which play an increasingly important role in this field.
innovations-report offers in-depth articles related to the development and application of materials and the structure and properties of new materials.
Newest articles
Pinpointing hydrogen isotopes in titanium hydride nanofilms
Although it is the smallest and lightest atom, hydrogen can have a big impact by infiltrating other materials and affecting their properties, such as superconductivity and metal-insulator-transitions. Now, researchers from…
A new way of entangling light and sound
For a wide variety of emerging quantum technologies, such as secure quantum communications and quantum computing, quantum entanglement is a prerequisite. Scientists at the Max-Planck-Institute for the Science of Light…
Telescope for NASA’s Roman Mission complete, delivered to Goddard
NASA’s Nancy Grace Roman Space Telescope is one giant step closer to unlocking the mysteries of the universe. The mission has now received its final major delivery: the Optical Telescope…