Dynamics in one-dimensional spin chains newly elucidated

The data from neutron scattering (left) provide information about absorbed energies in reciprocal space. With the new evaluation, it has been possible to obtain statements about new magnetic states and their temporal development in real space (right). The colours blue and red indicate the two opposite spin directions.
Credit: HZB/ORNL

Potassium copper fluoride KCuF3 is considered the simplest model material realising the so-called Heisenberg quantum spin chain: The spins interact with their neighbours antiferromagnetically along a single direction (one-dimensional), governed by the laws of quantum physics.

“We carried out the measurements on this simple model material at the ISIS spallation neutron source some time ago when I was a postdoc, and we  published our results in 2005, 2013 and again in 2021 comparing to new theories each time they became available,” says Prof. Bella Lake, who heads the HZB-Institute Quantum Phenomena in Novel Materials. Now with new and extended methods, a team led by Prof. Alan Tennant and Dr Allen Scheie have succeeded to gain significantly deeper insights into the interactions between the spins and their spatial and temporal evolution.

Dynamics like a wake

“With neutron scattering, you sort of nudge a spin so that it flips. This creates a dynamic, like a wake when a ship is sailing through water, which can affect its neighbours and their neighbours,” Tennant explains.

”Neutron scattering data is measured as a function of energy and wavevector” says Scheie “ Our breakthrough was to map the spatial and temporal development of the spins using mathematical methods such as a back-Fourier transformation.” Combined with other theoretical methods, the physicists gathered information about interactions between the spin states and their duration and range, as well as insights into the so-called quantum coherence.

New tool box

The work demonstrates a new tool box for the analysis of neutron scattering data and might foster a deeper understanding of quantum materials that are relevant for technological use.

Journal: Nature Communications
DOI:  10.1038/s41467-022-33571-8
Method of Research: Experimental study
Subject of Research: Not applicable
Article Title: Quantum wake dynamics in Heisenberg antiferromagnetic chains
Article Publication Date: 2-Oct-2022
COI Statement: none

Media Contact

Antonia Roetger
Helmholtz-Zentrum Berlin für Materialien und Energie
antonia.roetger@helmholtz-berlin.de
Office: 0049-308-062-43733

Media Contact

Antonia Roetger
Helmholtz-Zentrum Berlin für Materialien und Energie

All latest news from the category: Materials Sciences

Materials management deals with the research, development, manufacturing and processing of raw and industrial materials. Key aspects here are biological and medical issues, which play an increasingly important role in this field.

innovations-report offers in-depth articles related to the development and application of materials and the structure and properties of new materials.

Back to home

Comments (0)

Write a comment

Newest articles

Innovative 3D printed scaffolds offer new hope for bone healing

Researchers at the Institute for Bioengineering of Catalonia have developed novel 3D printed PLA-CaP scaffolds that promote blood vessel formation, ensuring better healing and regeneration of bone tissue. Bone is…

The surprising role of gut infection in Alzheimer’s disease

ASU- and Banner Alzheimer’s Institute-led study implicates link between a common virus and the disease, which travels from the gut to the brain and may be a target for antiviral…

Molecular gardening: New enzymes discovered for protein modification pruning

How deubiquitinases USP53 and USP54 cleave long polyubiquitin chains and how the former is linked to liver disease in children. Deubiquitinases (DUBs) are enzymes used by cells to trim protein…