Eco-Friendly: Lead-Free Joining of Electronic Components
The goal of a new research project at the Laser Zentrum Hannover e.V. (LZH) is to weld electronic components for televisions, cell phones, computers etc. quickly, easily and lead-free onto printed circuit boards.
To accomplish this, a “two-laser-solution” is being used. A green laser with low output power ensures optimal and repeatable process conditions, while an infrared laser with higher output power is used to actually weld the components. Since components are welded and not soldered, lead-based soldering material is not needed.
Infrared lasers (wavelength = 1064 nm) have already proven their value in numerous micro-welding applications. However, if copper or copper alloys must be joined, the laser beam is subject to reflection by material surface. Minor irregularities on the surface such as oxidation can have a highly negative influence on the process.
With the two-laser-solution, the component is first irradiated with a low-power, green laser (wave length = 532 nm) before the actual welding takes place. The radiation of the green laser is absorbed more easily, and the negative influences of irregularities on the component surface are minimized. Subsequently, the following welding process with the infrared laser can take place under consistent conditions, and the combination of the advantages of the two lasers – process safety at 532 nm and high output power at 1062 nm – can be used to produce high quality welds for electronic components.
The two-laser-process is important for industrial production for several reasons. Electronic assemblies are increasingly subject to higher temperatures, and accordingly, they cannot be soldered and must be welded. Also, welding does not need a soldering material and thus, the legal requirements for a lead-free joining technique can be fulfilled. To support industrial implementation, the LZH and the other project are working on the development of the necessary laser sources, circuit boards, optics, etc..
The project “SUPREME” is supported by the German Federal Ministry of Education and Research (BMBF) within the framework concept “Research for Tomorrow's Production”, together with project management Forschungszentrum Karlsruhe, Production and Manufacturing Technologies division.
Contact:
Laser Zentrum Hannover e.V. (LZH)
Michael Botts
Hollerithallee 8
D-30419 Hannover
Tel.: +49 511 2788-151
Fax: +49 511 2788-100
E-Mail: m.botts@lzh.de
The Laser Zentrum Hannover e.V. (LZH) carries out research and development in the field of laser technology and is supported by the Ministry of Economic Affairs, Labour and Transport of the State of Lower Saxony (Niedersächsisches Ministerium für Wirtschaft, Arbeit und Verkehr).
Media Contact
More Information:
http://www.lzh.deAll latest news from the category: Materials Sciences
Materials management deals with the research, development, manufacturing and processing of raw and industrial materials. Key aspects here are biological and medical issues, which play an increasingly important role in this field.
innovations-report offers in-depth articles related to the development and application of materials and the structure and properties of new materials.
Newest articles
Parallel Paths: Understanding Malaria Resistance in Chimpanzees and Humans
The closest relatives of humans adapt genetically to habitats and infections Survival of the Fittest: Genetic Adaptations Uncovered in Chimpanzees Görlitz, 10.01.2025. Chimpanzees have genetic adaptations that help them survive…
You are What You Eat—Stanford Study Links Fiber to Anti-Cancer Gene Modulation
The Fiber Gap: A Growing Concern in American Diets Fiber is well known to be an important part of a healthy diet, yet less than 10% of Americans eat the minimum recommended…
Trust Your Gut—RNA-Protein Discovery for Better Immunity
HIRI researchers uncover control mechanisms of polysaccharide utilization in Bacteroides thetaiotaomicron. Researchers at the Helmholtz Institute for RNA-based Infection Research (HIRI) and the Julius-Maximilians-Universität (JMU) in Würzburg have identified a…