First-Ever 3D Printed Excavator Project Advances Large-Scale Additive Manufacturing R&D
Increasing the size and speed of metal-based 3D printing techniques, using low-cost alloys like steel and aluminum, could create new industrial applications for additive manufacturing.
The excavator will be 3D printed using machines at the Department of Energy’s Manufacturing Demonstration Facility at ORNL to create and assemble three components: the cab where the operator sits, the stick (a large hydraulically articulated arm) and a heat exchanger. The excavator’s stick will be fabricated using the newly installed Wolf System, a machine that uses a freeform technique in printing large-scale metal components. The heat exchanger will be printed on a Concept Laser machine that produces metal parts through a powder-bed-based laser melting process.
When 3D printing the excavator’s stick and heat exchanger, the team will further develop processes to improve material performance and printability and also validate models that will show how they can adapt to reduce residual stress and distortion.
“The beauty of a project of this size and scope is that it brings together many intelligent people to work on a number of challenges while accomplishing a common goal,” said Lonnie Love, who’s leading the 3D printed excavator project with ORNL’s Manufacturing Systems Research group. He expects the excavator to be printed, assembled and ready to be unveiled in only nine months.
3D printing an excavator for the first time is a learning experience for both seasoned researchers and the next generation of engineers.
A student engineering team from the University of Illinois at Urbana-Champaign won a design competition and recently visited the MDF to watch their cab design take shape on the Big Area Additive Manufacturing machine – the same system co-developed by ORNL and Cincinnati Incorporated that produced a replica Shelby Cobra sports car using carbon fiber-reinforced acrylonitrile butadiene styrene, or ABS, plastic.
“While hundreds of people, many of whom are students, visit the MDF each year, this is the first student group to watch their design 3D printed on one of our large-scale machines,” Love said. Additionally, Georgia Institute of Technology student Clayton Greer worked on the excavator’s stick as an ORNL intern.
“We’re also exposing them to the possibilities that additive manufacturing is affording industry that can help companies from so many different areas whether it’s automotive, construction or other applications yet to be discovered,” he added.
The completed excavator project, known as Project AME (Additive Manufactured Excavator), will be on display at IFPE and CONEXPO-CON/AGG in Las Vegas in March 2017. Plans are in the works to 3D print another excavator cab during a live demonstration at the event.
While 3D printing excavators, or any other construction vehicles, may not become common practice among manufacturers, Love said using AM to print low-volume, high-complexity components could benefit the construction industry by reducing production time and overall cost.
“Additive manufacturing can be used to print components on demand, which could potentially eliminate the need for mass storage, organization and transportation,” Love said.
The project was funded by DOE’s Office of Energy Efficiency and Renewable Energy – Advanced Manufacturing Office. AMO supports applied research, development and demonstration of new materials and processes for energy efficiency in manufacturing as well as platform technologies for the manufacturing of clean energy products. Visit ORNL’s Innovations in Manufacturing website for more information.
Key partners of Project AME include the Association of Equipment Manufacturers, the National Fluid Power Association, the Center for Compact and Efficient Fluid Power and the National Science Foundation.
UT-Battelle manages ORNL for the DOE’s Office of Science. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.
###
Image #1: https://www.ornl.gov/sites/default/files/1%20ORNL_3D-printed_excavator.JPG
Caption: The first-ever 3D printed excavator will include a cab designed by a University of Illinois at Urbana-Champaign student engineering team and printed at DOE’s Manufacturing Demonstration Facility at ORNL using carbon fiber-reinforced ABS plastic.
Image #2: https://www.ornl.gov/sites/default/files/2%20ORNL_Lonnie_Love_students.JPG
Caption: ORNL’s Lonnie Love, far right, explains the potential impact of additive manufacturing research and development to a student engineering team from the University of Illinois at Urbana-Champaign who toured DOE’s Manufacturing Demonstration Facility at ORNL.
Image #3: https://www.ornl.gov/sites/default/files/3%20ORNL_Lonnie_Love_students_in_BAAM.JPG
Caption: ORNL’s Lonnie Love hosted a University of Illinois at Urbana-Champaign student engineering team who watched their award-winning excavator cab design being printed on the Big Area Additive Manufacturing system at DOE’s Manufacturing Demonstration Facility at ORNL.
MEDIA CONTACT:
Sara Shoemaker
Oak Ridge National Laboratory
Communications
(865) 576-9219; shoemakerms@ornl.gov
Media Contact
More Information:
http://www.ornl.govAll latest news from the category: Materials Sciences
Materials management deals with the research, development, manufacturing and processing of raw and industrial materials. Key aspects here are biological and medical issues, which play an increasingly important role in this field.
innovations-report offers in-depth articles related to the development and application of materials and the structure and properties of new materials.
Newest articles
A ‘language’ for ML models to predict nanopore properties
A large number of 2D materials like graphene can have nanopores – small holes formed by missing atoms through which foreign substances can pass. The properties of these nanopores dictate many…
Clinically validated, wearable ultrasound patch
… for continuous blood pressure monitoring. A team of researchers at the University of California San Diego has developed a new and improved wearable ultrasound patch for continuous and noninvasive…
A new puzzle piece for string theory research
Dr. Ksenia Fedosova from the Cluster of Excellence Mathematics Münster, along with an international research team, has proven a conjecture in string theory that physicists had proposed regarding certain equations….