First ever observation of ‘time crystals’ interacting

The rotating refrigerator at Aalto University
Credit: Aalto University/Mikko Raskinen

For the first time ever, scientists have witnessed the interaction of a new phase of matter known as “time crystals”.

The discovery, published in Nature Materials, may lead to applications in quantum information processing because time crystals automatically remain intact – coherent – in varying conditions. Protecting coherence is the main difficulty hindering the development of powerful quantum computers.

Dr Samuli Autti, lead author from Lancaster University, said: “Controlling the interaction of two time crystals is a major achievement. Before this, nobody had observed two time crystals in the same system, let alone seen them interact.

“Controlled interactions are the number one item on the wish list of anyone looking to harness a time crystal for practical applications, such as quantum information processing.”

Time crystals are different from a standard crystal – like metals or rocks – which is composed of atoms arranged in a regularly repeating pattern in space.

First theorised in 2012 by Nobel Laureate Frank Wilczek and identified in 2016, time crystals exhibit the bizarre property of being in constant, repeating motion in time despite no external input. Their atoms are constantly oscillating, spinning, or moving first in one direction, and then the other.

An international team of researchers from Lancaster, Yale, Royal Holloway London, and Aalto University in Helsinki observed time crystals by using Helium-3 which is a rare isotope of helium with one missing neutron. The experiment was carried out in Aalto University.

They cooled superfluid helium-3 to within one ten thousandth of a degree from absolute zero (0.0001K or -273.15°C). The researchers then created two time crystals inside the superfluid, and allowed them to touch.

The scientists observed the two time crystals interacting and exchanging constituent particles flowing from one time crystal to the other one, and back – a phenomenon known as the Josephson effect.

Time crystals have great potential for practical applications. They could be used to improve current atomic clock technology – complex timepieces that keep the most accurate time that we can possibly achieve. They could also improve technology such as gyroscopes, and systems that rely on atomic clocks, such as GPS.

Media Contact

Gillian.whitworth
gillian.whitworth@lancaster.ac.uk
07-443-331-165

http://www.lancs.ac.uk 

Related Journal Article

http://dx.doi.org/10.1038/s41563-020-0780-y

All latest news from the category: Materials Sciences

Materials management deals with the research, development, manufacturing and processing of raw and industrial materials. Key aspects here are biological and medical issues, which play an increasingly important role in this field.

innovations-report offers in-depth articles related to the development and application of materials and the structure and properties of new materials.

Back to home

Comments (0)

Write a comment

Newest articles

Visualization of declining Arctic sea ice and pressure ridges, highlighting environmental and ecosystem impacts.

Melting Ice, Shifting Ecosystems: The Pressure Ridge Decline Explained

Analysis of three decades of aerial survey data reveals major changes In the Arctic, the old, multiyear ice is increasingly melting, dramatically reducing the frequency and size of pressure ridges….

Illustration of PD-1 receptor highlighting species-specific differences between humans and rodents

Redefining Cancer Science: Rodents, Humans, and the PD-1 Puzzle

Results of a comprehensive analysis refute assumptions that a key immune checkpoint receptor functions the same in rodents and humans The Discovery of PD-1: A Milestone in Cancer Treatment Since…

Cardiac surgery team in operating room monitoring blood pressure to prevent kidney injury.

Heart Surgery Risks: Low BP Linked to Postoperative Kidney Injury

First large cohort study at the Heart and Diabetes Center NRW awarded – Hilke Jung presents research project at the FoRUM conference of the Ruhr University Bochum A working group…