Using New Materials To Make More Reliable Nanoelectromechanical Systems

Now, researchers at Northwestern University, the Center for Integrated Nanotechnologies at Sandia and Los Alamos National Laboratories, and Binghamton University have found a way to dramatically improve the reliability of carbon nanotube-based nanoelectromechanical systems. Their results are published in the journal Small.

“Depending on their geometry, these devices have a tendency to stick shut, burn or fracture after only a few cycles,” said Horacio Espinosa, James N. and Nancy J. Professor in the McCormick School of Engineering at Northwestern University. “This significantly limits any practical application of such nano devices. Our discovery may be a key to advancing carbon nanotube-based nanoelectromechanical systems from laboratory-scale demonstrations to viable and attractive alternatives to many of our current microelectronic devices.”

To date, carbon nanotube-based nanoelectromechanical devices have ubiquitously used metal, thin-film electrodes. The Northwestern University group in collaboration with SANDIA investigators replaced these electrodes with electrodes made from diamond-like carbon (an electrically-conductive and mechanical robust material), which suppressed the onset of failure. This enabled them to demonstrate the first example of nanoelectromechanical devices constructed from individual CNTs switching reliably over numerous cycles and apply this functionality to memory elements that store binary states.

“This represents a significant step in the maturation of carbon nanotube-based device technology,” Espinosa said.

The team used a carbon nanotube-based nanoelectromechanical switch as a platform to study failure modes and investigate potential solutions.

“This switch shares operating principles, and thus failure modes, with numerous reported devices,” said Owen Loh, a graduate student in Espinosa’s lab. “In this way, we hope the results will be broadly applicable.”

First, the team conducted a parametric study of the design space of devices using conventional metal electrodes. This enabled identification of the point of onset of the various failure modes within the design space and highlighted the highly limited region in which the devices would function reliably without failure. They then used computational models to explain the underlying mechanisms for the experimentally-observed modes of failure.

“Using these models, we can replicate the geometry of the devices tested and ultimately explain why they fail,” said Xiaoding Wei, a post-doctoral fellow in Espinosa’s lab.

The team then demonstrated that using alternative electrode materials like diamond-like carbon could greatly improve the reliability of these devices. They repeated a similar parametric study using diamond-like carbon electrodes rather than metal thin films and found a dramatic improvement in device robustness. This enabled reliable switching of the carbon nanotube-based devices through numerous cycles, as well as application to the volatile storage of binary “0” and “1” states.

Other co-authors of the paper include Changhong Ke and John Sullivan.

This work was supported by the Army Research Office and National Science Foundation, and was performed in part at the Center for Integrated Nanotechnologies, a U.S. Department of Energy facility at Los Alamos National laboratory and Sandia National Laboratories, and in part at the Center for Nanoscale Materials.

Media Contact

Kyle Delaney EurekAlert!

More Information:

http://www.northwestern.edu

All latest news from the category: Materials Sciences

Materials management deals with the research, development, manufacturing and processing of raw and industrial materials. Key aspects here are biological and medical issues, which play an increasingly important role in this field.

innovations-report offers in-depth articles related to the development and application of materials and the structure and properties of new materials.

Back to home

Comments (0)

Write a comment

Newest articles

Little girl, School, Education.

STRONG Program Cuts Anxiety Issues in Immigrant and Refugee Students

The first randomized control trial of the school-based intervention called Supporting Transition Resilience of Newcomer Groups (STRONG) shows significant reductions in depression, anxiety and behavior problems among refugee and immigrant…

An Ohio State study found a link between impairments in physical function and hospital readmission risk among adults 50 years of age and older.

Physical Function Impairments Linked to Hospital Readmission Among 50+ Adults

Researchers from The Ohio State University Wexner Medical Center and College of Medicine’s School of Health and Rehabilitation Sciences (HRS) recently published a study that found a link between impairments in physical function and…

Elderly Man Stretching His Body.

Study Reveals Exercise Improves Brain Insulin, Helps Prevent Dementia

Study confirms positive effects of exercise on insulin signaling proteins from the brain A study led by scientists at Rutgers University-New Brunswick has shown that specialized cells involved in how…