New origami-inspired system

Dr Jeff Lee with a new flat-pack tube designed by the RMIT team.
Credit: Will Wright, RMIT University

… turns flat-pack tubes into strong building materials.

Engineers at RMIT University have designed an innovative tubular structural system that can be packed flat for easier transport and pop up into strong building materials.

This breakthrough is made possible by a self-locking system inspired by curved-crease origami — a technique that uses curved crease lines in paper folding.

Lead researchers, Dr Jeff (Ting-Uei) Lee and Distinguished Professor Mike (Yi Min) Xie, said bamboo, which has internal structures providing natural reinforcement, inspired the tube design.

“This self-locking system is the result of an intelligent geometric design,” said Lee from RMIT’s School of Engineering.

“Our invention is suitable for large-scale use — a panel, weighing just 1.3 kg, made from multiple tubes can easily support a 75 kg person.”

Flat-pack tubes are already widely used in engineering and scientific applications, such as in biomedical devices, aerospace structures, robotics and civil construction, including pop-up buildings as part of disaster recovery efforts.

The new system makes these tubes quicker and easier to assemble, with the capability to automatically transform into a strong, self-locked state.

“Our research not only opens up new possibilities for innovative and multifunctional structural designs, but it can also significantly improve existing deployable systems,” said Xie from the School of Engineering.

“When NASA deploys solar arrays, for example, the booms used are tubes that were packed flat before being unfurled in space,” Lee said.

“These tubes are hollow though, so they could potentially deform under certain forces in space. With our new design, these booms could be a stronger structure.”

The research is published in the prestigious journal Proceedings of the National Academy of Sciences (PNAS). Other contributors to this work include Drs Hongjia Lu, Jiaming Ma and Ngoc San Ha from RMIT’s School of Engineering and Associate Professor Joseph Gattas from the University of Queensland.

Xie said their smart algorithm enabled control over how the structure behaved under forces by changing the tube orientations.

“With our origami-inspired innovation, flat-pack tubes are not only easy to transport, but they also become strong enough to withstand external forces when in use,” Xie said.

“The tube is also self-locking, meaning its strong shape is securely locked in place without the need for extra mechanisms or human intervention.”

Next steps

The team will continue to improve the design and explore new possibilities for its development.

“We aim to extend the self-locking feature to different tube shapes and test how the tubes perform under various forces, such as bending and twisting,” Lee said.

“We are also exploring new materials and manufacturing methods to create smaller, more precise tubes.”

The team is developing tubes that can deploy themselves for a range of applications without needing much manual effort.

“We plan to improve our smart algorithm to make the tubes even more adaptable and efficient for different real-world situations,” Xie said.

‘Self-locking and stiffening deployable tubular structures’ is published in the PNAS journal.

MULTIMEDIA AVAILABLE FOR MEDIA USE

Images and video related to the research are available for download and use here: https://spaces.hightail.com/space/4Chw6AdlhA 

Journal: Proceedings of the National Academy of Sciences
DOI: 10.1073/pnas.2409062121
Method of Research: Experimental study
Subject of Research: Not applicable
Article Title: Self-locking and stiffening deployable tubular structures
Article Publication Date: 27-Sep-2024

Media Contact

Will Wright
RMIT University
will.wright@rmit.edu.au
Cell: 0417510735

www.rmit.edu.au

Video: https://www.eurekalert.org/multimedia/1043076

Media Contact

Will Wright
RMIT University

All latest news from the category: Materials Sciences

Materials management deals with the research, development, manufacturing and processing of raw and industrial materials. Key aspects here are biological and medical issues, which play an increasingly important role in this field.

innovations-report offers in-depth articles related to the development and application of materials and the structure and properties of new materials.

Back to home

Comments (0)

Write a comment

Newest articles

Potential breakthrough for hard to treat cancers

Experts from the University’s Centre for Targeted Protein Degradation (CeTPD), working with Boehringer Ingelheim scientists, have developed a breakthrough small-molecule drug, a “protein degrader”. KRAS is the most mutated gene…

Paving the way for new treatments

Mizzou researcher Jianlin “Jack” Cheng debuts tool to build 3D structure of protein complexes, giving scientists insights to prevent and treat disease. A University of Missouri researcher has created a…

First-in-procedure to treat bladder leaks

UChicago Medicine has become the first medical center in Illinois to implant the Revi neuromodulation device, an exciting new treatment option that could offer relief for patients with urinary urgency…

Partners & Sponsors