Novel biomaterial delivers medication directly to fish gut

A researcher administers the biomaterial to ornamental fish from the Amazon. The bioparticle was effective in this trial, paving the way for its use to treat fish farmed for human consumption
Credit: Omar Mertins

In addition to helping combat antimicrobial resistance, the bioparticle developed at the Federal University of São Paulo avoids the waste and pollution created by excessive amounts of drugs in water bodies.

A novel biomaterial developed at the Federal University of São Paulo (UNIFESP) in Brazil can help solve two problems at once. As a bioparticle, it can act as a drug carrier, delivering medication directly to the gastrointestinal tract of fish in order to circumvent resistance to conventional antibiotics, for example. In addition, it is administered orally in powder form and is highly palatable to fish, increasing the probability of effective treatment while at the same time reducing the waste and pollution inherent in the medication of these animals.

The research is reported in an article published in the journal Biomaterials Advances.

“Our bioparticle can pass through the digestive tract and deliver medication directly to the intestine, enhancing the efficacy of conventional drugs, which is increasingly impaired by bacterial resistance,” said Patrick D. Mathews, a co-author of the article. The research was conducted while he was a postdoctoral fellow at UNIFESP’s Medical School (EPM).

“The material can be administered directly in the water, where it is consumed by the fish. The normal delivery method entails mixing medication into feed, so you never know how much is actually consumed as opposed to just polluting the water. This has become a serious issue for large fish farming ventures such as Chile’s salmon industry,” said Mathews, who was recently awarded a Young Investigator Grant by FAPESP and will continue the research at São Paulo State University’s Botucatu Institute of Biosciences (IBB-UNESP).

The bioparticle is based on chitosan and alginate, polysaccharides of natural origin used in industry and research. Chitosan is derived from the shells of crustaceans, and alginate is derived from seaweed. The formulation also contains arginine, an amino acid present in most protein-rich foods. The antimicrobial molecule used was a peptide obtained from an arachnid found in Brazil’s Southeast region.

Specimens of Schwartz’s catfish (Corydoras schwartzi), an ornamental fish species native to the Amazon and other parts of South America, were treated with the biomaterial for eight days. Analysis of their intestinal tissue showed high penetration of the biomaterial into epithelial cells and deeper layers of the organ. Various histological methods failed to detect any cytotoxic effects or other damage due to the particle. Hematological tests confirmed the absence of toxicity in blood cells.

“We used materials known to have little or no cytotoxicity. Chitosan also has the advantage of adhering well to mucous membranes, as demonstrated in the study. The tests also showed that it tolerates digestive tract acidity and reaches the intestine intact,” said Omar Mertins, a professor in EPM-UNIFESP’s Biophysics Department and last author of the article.

The material resulted from two projects led by Mertins: “Improvement of the properties of the polysaccharide chitosan for its application in liposomes and giant vesicles” and “Crystalline-phase nano cubosome functionalized with biopolymers: development as a drug carrier and in vivo studies in zebrafish (Danio rerio)”.

Parasites

In a previous study, the researchers tested the efficacy of a similar formulation against parasites that infect the same fish species. The bioparticle delivered the anthelmintic drug praziquantel, widely used to treat diseases caused by parasitic flatworms (helminths).

“These and other ornamental fish are mainly exported to Asia, Europe and the United States, taking large number of parasites with them. The introduction of novel pathogens via these exports is a significant risk for ecosystems and even commercial production, as they can contaminate both wild and farmed species,” Mathews said.

In the intestines of the animals colonized by worms, the bioparticle penetrated the cysts built by the parasites for self-protection, demonstrating that the material can be used as a drug carrier to treat other fish species. An application has been filed for a patent on one of the formulations.

The researchers will now test this and other formulations to treat parasites in fish commercially farmed for human consumption, such as the Nile tilapia (Oreochromis niloticus) and the Tambaqui (Colossoma macropomum).

study conducted in 2017 by another group of researchers estimated the annual loss to freshwater fish farming in Brazil due to disease at USD 84 million.

“The fact that the material is non-toxic to fish shows it isn’t harmful for humans who consume their flesh. The prospects for application are highly positive,” Mertins said.

About São Paulo Research Foundation (FAPESP)

The São Paulo Research Foundation (FAPESP) is a public institution with the mission of supporting scientific research in all fields of knowledge by awarding scholarships, fellowships and grants to investigators linked with higher education and research institutions in the State of São Paulo, Brazil. FAPESP is aware that the very best research can only be done by working with the best researchers internationally. Therefore, it has established partnerships with funding agencies, higher education, private companies, and research organizations in other countries known for the quality of their research and has been encouraging scientists funded by its grants to further develop their international collaboration. You can learn more about FAPESP at www.fapesp.br/en and visit FAPESP news agency at www.agencia.fapesp.br/en to keep updated with the latest scientific breakthroughs FAPESP helps achieve through its many programs, awards and research centers. You may also subscribe to FAPESP news agency at http://agencia.fapesp.br/subscribe.

Journal: Biomaterials Advances
DOI: 10.1016/j.bioadv.2023.213525
Article Title: Antibacterial polypeptide-bioparticle for oral administration: Powder formulation, palatability and in vivo toxicity approach
Article Publication Date: 13-Jul-2023

Media Contact

Heloisa Reinert
Fundação de Amparo à Pesquisa do Estado de São Paulo
hreinert@fapesp.br
Cell: 55-11966392552

Media Contact

Heloisa Reinert
Fundação de Amparo à Pesquisa do Estado de São Paulo

All latest news from the category: Materials Sciences

Materials management deals with the research, development, manufacturing and processing of raw and industrial materials. Key aspects here are biological and medical issues, which play an increasingly important role in this field.

innovations-report offers in-depth articles related to the development and application of materials and the structure and properties of new materials.

Back to home

Comments (0)

Write a comment

Newest articles

Future AR/VR controllers could be the palm of your hand

Carnegie Mellon University’s EgoTouch creates simple interfaces for virtual and augmented reality. The new generation of augmented and virtual reality controllers may not just fit in the palm of your…

‘Game changer’ in lithium extraction

Rice researchers develop novel electrochemical reactor. A team of Rice University researchers led by Lisa Biswal and Haotian Wang has developed an innovative electrochemical reactor to extract lithium from natural…

The blue-green sustainable proteins of seaweed

… may soon be on your plate. The protein in sea lettuce, a type of seaweed, is a promising complement to both meat and other current alternative protein sources. Seaweed…