On-Surface Chemistry Leads to Novel Products

Catalyzed by the copper atoms of the surface, the precursor molecule alters its structure and spatial arrangement when heated gradually. (Illustration: University of Basel, Department of Physics)

In numerous nanotechnology applications, individual molecules are placed on surfaces to fulfill specific functions – such as conducting an electrical current or emitting a light signal. Ideally, scientists will synthetize these sometimes extremely complex chemical compounds directly on the surface.

The on-surface chemical reactions can be followed step by step with the aid of ultra-high-resolution atomic force microscopes. The data obtained also enables them to calculate the precise molecular structure and the energetics along the path.

For their experiments, colleagues of Professor Ernst Meyer from the University of Basel selected a molecule consisting of three benzene rings joined by a triple bond. When the researchers apply this molecule to a silver surface, the molecules arrange themselves in a consistent pattern – but there is no chemical reaction.

Copper as a catalyst

On a copper surface, however, the molecules react already at a temperature of -123 °C. Catalyzed by the copper atoms, the precursor molecule incorporates two hydrogen atoms thereby altering its structure and spatial arrangement. When the sample is heated to 200 °C, a further reaction step takes place in which two pentagonal rings are formed.

A further increase in temperature to 400 °C causes a cleaving of hydrogen atoms and forms a further carbon-carbon bond. The final two reaction steps lead to aromatic hydrocarbon compounds, which had previously not been synthetized in solution chemistry.

The researchers conducted these experiments in ultra-high vacuum conditions and were able to monitor the synthesis using a high-resolution atomic force microscope with a carbon monoxide terminated tip. Comparative computer calculations generated the precise molecular structure, which perfectly matched the microscope images.

Tailored nanostructures

Through their experiments, the international research team has shown that on-surface chemistry can lead to novel products. “This extremely pure form of chemistry provides us with tailored on-surface nanostructures that can be used in a variety of ways,” says Meyer, commenting on the work largely performed by Dr. Shigeki Kawai. In the example presented, the copper surface functions as a catalyst; the chemical reaction of the precursor molecules is controlled by adding heat and can be monitored via atomic force microscopy.

Original paper

Shigeki Kawai, Ville Haapasilta, Benjamin D. Lindner, Kazukuni Tahara, Peter Spijker, Jeroen A. Buitendijk, Rémy Pawlak, Tobias Meier, Yoshito Tobe, Adam S. Foster, and Ernst Meyer
Thermal control of a sequential on-surface transformation of a hydrocarbon molecule on copper surface
Nature Communications (2016), doi: 10.1038/ncomms12711

Further information

Professor Ernst Meyer, University of Basel, Department of Physics, tel. +41 61 267 37 24, email: ernst.meyer@unibas.ch

Media Contact

Reto Caluori Universität Basel

More Information:

http://www.unibas.ch

All latest news from the category: Materials Sciences

Materials management deals with the research, development, manufacturing and processing of raw and industrial materials. Key aspects here are biological and medical issues, which play an increasingly important role in this field.

innovations-report offers in-depth articles related to the development and application of materials and the structure and properties of new materials.

Back to home

Comments (0)

Write a comment

Newest articles

Sensitive ceramics for soft robotics

Most people think of coffee cups, bathroom tiles or flower pots when they hear the word “ceramic”. Not so Frank Clemens. For the research group leader in Empa’s Laboratory for…

‘Entirely unanticipated’ role of protein netrin1 in spinal cord development

Known for its axon guidance properties, new research suggests protein is critical in guiding neural development. Scientists at the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research…

AI to improve brain cancer diagnosis, monitoring, treatment

Recommendations published in The Lancet Oncology call for good clinical practice of new technologies to modernize decades-old standard of care for brain cancer patients. An international, multidisciplinary team of leading…