Materials management deals with the research, development, manufacturing and processing of raw and industrial materials. Key aspects here are biological and medical issues, which play an increasingly important role in this field.
innovations-report offers in-depth articles related to the development and application of materials and the structure and properties of new materials.
Research into making the emerging nanomaterial industry environmentally sustainable is showing promise in a preliminary engineering study conducted at the Georgia Institute of Technology and Rice University.
Under the auspices of the Rice University Center for Biological and Environmental Nanotechnology (CBEN) funded by the National Science Foundation (NSF), researchers have been investigating the potential environmental impact of nanomaterial waste. Specifically, they want to kn
North Carolina scientists have found that “thinnest” is not necessarily “best” in rating structure and function of carbon nanotubes, the molecule-sized cylinders that show promise for futuristic technology scaled at a billionths of a meter.
During an American Chemical Society national meeting, researchers at Duke University and Xintek, Inc. of Research Triangle Park, N.C., will report on the synthesis and testing of a new class of nanotubes made up of two to five layers of carbon
Its possible to grow thin films of mother of pearl in the laboratory that are even stronger than the super-strong material that naturally lines the inside of abalone shells. The trick is to add compounds normally found in insect shells and fungi cell walls to the recipe.
Materials scientists have long been fascinated by mother of pearl, also known as nacre, (NACK-er) because it is several times stronger than nylon, said Nicholas Kotov, associate professor at the U-M College
An engineering professor at the University of California, San Diego has described in the March issue of JOM (the Journal of the Minerals, Metals and Materials Society) the unique properties of a new type of metallic laminate that can serve as armor and as a replacement for beryllium, a strong but toxic metal commonly used in demanding aerospace applications.
“The new material we developed is environmentally safe, and while its stiffness equals that of steel, it’s only half as
A new type of laminate performed spectacularly in depth-of-penetration ballistics tests, but its greatest potential may derive from its ability to be tailored to meet specific engineering requirements
An engineering professor at the University of California, San Diego has described in the March issue of JOM (the Journal of the Minerals, Metals and Materials Society) the unique properties of a new type of metallic laminate that can serve as armor and as a replacement for berylliu
Resembling neatly stacked rows of driftwood abandoned by receding tides, particles left by a confined, evaporating droplet can create beautiful and complex patterns. The natural, pattern-forming process could find use in fields such as nanotechnology and optoelectronics.
“A lot of work in nanotechnology has been directed toward the bottom-up imposition of patterns onto materials,” said Steve Granick, a professor of materials science, chemistry and physics at the University of Ill